1. |
EXECUTIVE SUMMARY |
1.1. |
Cardiovascular disease (CVD) |
1.2. |
CVD: Number 1 killer and heavy economic burden |
1.3. |
Report summary |
1.4. |
Artificial intelligence (AI) in CVD imaging: Active companies |
1.5. |
Drivers & constraints of AI in cardiovascular imaging |
1.6. |
AI in cardiovascular imaging: Investments & funding |
1.7. |
AI in cardiovascular imaging: Remarks & outlook |
1.8. |
The value of point-of-care (POC) testing |
1.9. |
Devices for CVD biomarker detection: Key players |
1.10. |
LFAs for CVD biomarker detection: Key players |
1.11. |
In vitro diagnostics at point-of-care: Remarks and outlook |
1.12. |
Electrode-based wearable accessories for RPM |
1.13. |
Smart clothing for RPM |
1.14. |
Electronic skin patches for RPM |
1.15. |
Wearable optical sensing technologies |
1.16. |
Blood pressure monitoring technologies |
1.17. |
Ambulatory cardiac monitoring: Historic revenues & forecast |
1.18. |
Smart clothing suitable for RPM: Historic revenues & forecast |
1.19. |
Wearable accessories for RPM: Historic revenue data |
1.20. |
Wearable accessories for RPM: Revenue forecast |
1.21. |
Wearables for RPM: Remarks & outlook |
1.22. |
Non-wearables for RPM: Remarks & outlook |
1.23. |
Cardiac rhythm management: Key players & devices |
1.24. |
Cardiac devices: Market share |
1.25. |
Cardiac devices: Market forecast 2019-2029 |
1.26. |
Devices for cardiac rhythm management and heart failure: Remarks & outlook |
1.27. |
Heart failure treatment: Moving towards 3D bioprinted cardiovascular tissue |
1.28. |
3D bioprinting cardiovascular tissue: Opportunities |
1.29. |
3D bioprinting cardiovascular tissue: Remarks & outlook |
1.30. |
Other treatments: Remarks & outlook |
1.31. |
Key conclusions & takeaways |
2. |
INTRODUCTION |
2.1. |
Scope of report |
2.2. |
The heart |
2.3. |
Cardiovascular disease (CVD) |
2.4. |
Coronary heart disease leads to heart attack |
2.5. |
Stroke |
2.6. |
Arrhythmia |
2.7. |
Atrial fibrillation |
2.8. |
Heart failure |
2.9. |
Other cardiovascular disorders |
2.10. |
Some CVDs are interlinked - one may lead to another |
2.11. |
Incidence of CVD |
2.12. |
Economic and healthcare costs of CVD |
2.13. |
CVD technologies: Market drivers |
2.14. |
Report summary |
3. |
DETECTION & DIAGNOSIS |
3.1. |
Artificial intelligence in cardiovascular imaging |
3.1.1. |
Traditional cardiovascular imaging methods |
3.1.2. |
Enter artificial intelligence (AI) |
3.1.3. |
Drivers & constraints of AI in cardiovascular imaging |
3.1.4. |
Innovations in cardiovascular imaging |
3.1.5. |
Using imaging & AI to build 3D virtual models |
3.1.6. |
Centerline Biomedical: Vasculature models for catheter navigation |
3.1.7. |
inHEART: Cardiac models for intervention planning |
3.1.8. |
Using imaging & AI to detect clots and blockages |
3.1.9. |
iSchemaView: Assessing ischaemic brain injury |
3.1.10. |
iSchemaView: Assessing ischaemic brain injury (2) |
3.1.11. |
Sensome: Categorising blood clots and tissue composition |
3.1.12. |
HeartFlow: Identifying coronary artery blockages |
3.1.13. |
Other AI-driven cardiovascular imaging technologies |
3.1.14. |
AI to analyse cardiovascular images |
3.1.15. |
AI to analyse cardiovascular images (2) |
3.1.16. |
HeartVista: Autonomous MRI imaging |
3.1.17. |
Further AI uses: Predicting cardiac events |
3.1.18. |
Catalia Health: Home healthcare robot assistant |
3.1.19. |
Detecting cardiac events through sounds |
3.1.20. |
Automation of cardiac electric signal reading |
3.1.21. |
AI in cardiovascular imaging: Investments |
3.1.22. |
AI in cardiovascular imaging: Funding |
3.1.23. |
AI in healthcare: Regulations & path to approval |
3.1.24. |
Imaging devices: Regulations & path to approval |
3.1.25. |
Radiation from imaging devices: Safety regulations |
3.1.26. |
Concluding remarks & outlook |
3.2. |
In vitro diagnostics at point-of-care |
3.2.1. |
Point-of-care diagnostics can increase standards of care |
3.2.2. |
Biosensors, bioreceptors and biotransducers |
3.2.3. |
The value of POC testing |
3.2.4. |
Biomarkers: indicators of disease |
3.2.5. |
Characterizing different POC biosensor technologies |
3.2.6. |
cTnI measurement using LOAC devices |
3.2.7. |
cTnI measurement via LAOC: iSTAT |
3.2.8. |
Stroke detection via LOAC: Evidence MultiSTAT |
3.2.9. |
Cholesterol: An indicator of CVD risk & onset |
3.2.10. |
Electrochemical test strips: cholesterol detection |
3.2.11. |
Cholesterol electrochemical test strips - Key players |
3.2.12. |
Other electrochemical test strips for CVD |
3.2.13. |
The future of electrochemical test strips |
3.2.14. |
Lateral flow assays (LFAs) at point-of-care |
3.2.15. |
LFAs for CVD biomarker detection: Key players |
3.2.16. |
Commercial cardiac LFA tests |
3.2.17. |
Commercial cardiac LFA devices |
3.2.18. |
Detection of CVD biomarkers via LFA: Roche |
3.2.19. |
LFA: Measuring multiple biomarkers simultaneously |
3.2.20. |
Innovations in cTnI LFA testing: MIP Diagnostics |
3.2.21. |
Lipid profiling via LFA: Alere |
3.2.22. |
Molecular diagnostics (MDx): From the lab to POC |
3.2.23. |
Applications of MDx at POC for CVD diagnosis |
3.2.24. |
MDx to prevent adverse response to anticoagulant drugs |
3.2.25. |
Molecular POC devices still have a long way to go |
3.2.26. |
Challenges of developing POC MDx devices for CVD |
3.2.27. |
POC devices: Regulatory routes to market |
3.2.28. |
POC devices: Regulatory road map in the US |
3.2.29. |
Concluding remarks and outlook |
4. |
REMOTE PATIENT MONITORING |
4.1. |
Wearable technology for remote patient monitoring |
4.1.1. |
Cardiovascular monitoring via wearable devices |
4.1.2. |
American Well and the rise of RPM |
4.1.3. |
Key American Well Partnerships in cardiovascular health |
4.1.4. |
Wearable vs implantable monitoring |
4.1.5. |
Biotronik: Injectable cardiac monitor |
4.1.6. |
Electrode-based wearable cardiac monitors |
4.1.7. |
Heart monitoring using electrodes |
4.1.8. |
Measuring biopotential |
4.1.9. |
The circuitry for measuring biopotential |
4.1.10. |
Electrocardiogram (ECG) |
4.1.11. |
What do ECG readings mean? |
4.1.12. |
Innovations in ECG devices |
4.1.13. |
Progress towards ambulatory cardiac monitoring |
4.1.14. |
Differentiation between ambulatory cardiac monitors |
4.1.15. |
Electrode-based wearable accessories for RPM |
4.1.16. |
Smart watch: Apple Watch Series 5 |
4.1.17. |
Apple Watch: Clinical studies |
4.1.18. |
Smart watch: Withings' Move ECG |
4.1.19. |
Chest strap: Custo-Med |
4.1.20. |
Necklace: toSense CoVa |
4.1.21. |
Smart clothing for RPM |
4.1.22. |
Smart clothing: WeHealth |
4.1.23. |
Smart clothing: ChronoLife |
4.1.24. |
Smart clothing: Hexoskin |
4.1.25. |
Smart clothing: Myant |
4.1.26. |
Electronic skin patches for RPM |
4.1.27. |
Skin patches: VivaLNK |
4.1.28. |
Skin patches: Holst Center |
4.1.29. |
Skin patches: Cardiomo |
4.1.30. |
Other cardiac monitoring skin patches |
4.1.31. |
Wearable optical sensors for HRM and more |
4.1.32. |
Photoplethysmography (PPG) |
4.1.33. |
Transmission-mode PPG vs Reflectance-mode PPG |
4.1.34. |
Wearable optical sensing technologies |
4.1.35. |
Valencell |
4.1.36. |
Philips |
4.1.37. |
Well Being Digital (WBD101) |
4.1.38. |
APM |
4.1.39. |
Sky Labs |
4.1.40. |
Monitoring blood pressure and flow |
4.1.41. |
What is blood pressure? |
4.1.42. |
How is blood pressure measured? |
4.1.43. |
History of blood pressure monitoring devices |
4.1.44. |
Inferring blood pressure from other heart biometrics |
4.1.45. |
Blood pressure monitoring technologies |
4.1.46. |
Blood pressure monitoring: Withings |
4.1.47. |
Blood pressure monitoring: Omron |
4.1.48. |
Blood pressure monitoring: Tarilian Laser Technologies |
4.1.49. |
Blood flow monitoring: Ida Health |
4.1.50. |
Wearable cardiac monitoring technologies in clinical trials |
4.1.51. |
Ambulatory cardiac monitoring: Historic revenue data |
4.1.52. |
Ambulatory cardiac monitoring: Revenue forecast |
4.1.53. |
Smart clothing suitable for RPM: Historic revenue data |
4.1.54. |
Smart clothing suitable for RPM: Revenue forecast |
4.1.55. |
Wearable accessories for RPM: Historic revenue data |
4.1.56. |
Wearable accessories for RPM: Revenue forecast |
4.1.57. |
Wearables for RPM: concluding remarks & outlook |
4.2. |
Non-wearable technology for remote patient monitoring |
4.2.1. |
Cardiovascular monitoring using non-wearable devices |
4.2.2. |
Evolution of the Stethoscope into the Digital Realm |
4.2.3. |
Digital stethoscopes |
4.2.4. |
Smart scale: Withings |
4.2.5. |
Contact-free patient monitoring: EarlySense |
4.2.6. |
Portable devices for cardiac monitoring |
4.2.7. |
Portable devices: AliveCor |
4.2.8. |
Portable devices: BioTelemetry, Inc. |
4.2.9. |
Non-wearable technologies in clinical trials |
4.2.10. |
Non-wearables for RPM: concluding remarks & outlook |
5. |
TREATMENT |
5.1. |
Devices for cardiac rhythm management and heart failure |
5.1.1. |
Cardiac devices can provide treatment where drugs can't |
5.1.2. |
Devices for cardiac rhythm management: Key players |
5.1.3. |
Market drivers and Constraints |
5.1.4. |
Devices for cardiac rhythm management |
5.1.5. |
Cardiac Device Components |
5.1.6. |
Implantation Procedure |
5.1.7. |
Pacemakers and other cardiac rhythm implants |
5.1.8. |
Pacemakers |
5.1.9. |
Leadless Pacemakers |
5.1.10. |
Medtronic: CareLink |
5.1.11. |
Medtronic: CareLink (2) |
5.1.12. |
Boston Scientific: Latitude |
5.1.13. |
Arrhythmia treatment: Transcatheter ablation |
5.1.14. |
Transcatheter ablation techniques and their limitations |
5.1.15. |
Transcatheter ablation equipment |
5.1.16. |
Transcatheter ablation innovations: DiamondTemp |
5.1.17. |
Transcatheter ablation innovations: Helios II system |
5.1.18. |
Transcatheter ablation innovations: APAMA RF |
5.1.19. |
Heart failure treatment |
5.1.20. |
Automated external defibrillators |
5.1.21. |
Portable external defibrillators: Zoll |
5.1.22. |
Cardiac Resynchronization Therapy |
5.1.23. |
Implantable Cardioverter Defibrillators |
5.1.24. |
Extravascular Cardioverter Defibrillator |
5.1.25. |
Carotid sinus nerve stimulator: CVRx |
5.1.26. |
Cardiac Contractility Modulators: Impulse Dynamics |
5.1.27. |
Cardiac device development opportunities |
5.1.28. |
Ongoing Clinical Trials |
5.1.29. |
ページTOPに戻る
本レポートと同分野(個々の器官作用薬)の最新刊レポート
IDTechEx社の個々の器官作用薬分野での最新刊レポート
本レポートと同じKEY WORD(循環器疾患)の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|