世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

エレクトロニックデバイス向け環境発電 2020-2040年:素材、自己充電デバイスの市場機会、技術ロードマップ、予測


Energy Harvesting for Electronic Devices 2020-2040

このレポートはエレクトロニックデバイス向けの環境発電デバイスに注目し、課題や可能性、予測/主要企業/市場促進要因の比較、バッテリーが不要になるまでのマイルストーンについて言及、分析しています。 ... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IDTechEx
アイディーテックエックス
2020年4月27日 US$6,500
電子ファイル(1-5ユーザライセンス)
ライセンス・価格情報・注文方法はこちら
214 英語

※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
最新の価格はデータリソースまでご確認ください。


 

サマリー

このレポートはエレクトロニックデバイス向けの環境発電デバイスに注目し、課題や可能性、予測/主要企業/市場促進要因の比較、バッテリーが不要になるまでのマイルストーンについて言及、分析しています。

主な掲載内容  ※目次より抜粋

  • エグゼクティブサマリと結論
  • 新しい市場動向
  • エレクトロニクス向けの新しい太陽光発電技術
  • エレクトロニクス向け摩擦発電技術
  • エレクトロニクス向け熱発電と焦電発電
  • 電気力学
  • 圧電性
  • 人工環境電磁放射、その他

Report Details

The new 215 page IDTechEx report, "Energy Harvesting for Electronic Devices 2020-2040" comes at just the right time. The world's first self-powered smartwatches have just arrived. They are not full-function but we are getting there. That billion a year harvester potential will be followed by similar numbers of Internet of Things nodes but why will Tesla jump in? Energy harvesting is a key enabling technology for these when it was not the case for the emergence of mobile phones and computers. Indeed, the hand crank/solar radio graduating to be the pendulum generator/solar watch shows how two forms of harvesting in one device are increasingly seen, one smartwatch melding thermoelectrics and solar.
 
Indeed, wireless, no-battery building controls harvest up to three modes. That multiplier effect powers demand well beyond $2 billion in 2030 and much more beyond, on IDTechEx 20 year forecasts. What next? Winners? Losers? Technology and sales forecasts? All in the report because of its unique scope and PhD level insights. Low power wireless networks, 5G, smart skin patches electrically powered by sweat, implants and medical wearables triboelectrically and electrodynamically powered by heartbeats, temperature differences, body movements. All are on the way but there is more.
 
The 25 page executive summary and conclusions is easily read by those in a hurry. Many new infograms pull together the needs, challenges, potential and compare forecasts/ leaders/ market drivers and battery elimination milestones ahead. Dip into the next 25 pages of new 20 year forecasts as you wish - triboelectric, photovoltaic, electrodynamic, thermoelectric, piezoelectric and other backed by forecasts for those smartwatches, pico products, wearable technologies, medical, IoT and other uses. Understand why Apple and Boeing will be involved.
 
Chapter 2 introduces the principles, compares the technologies in many ways including vibration harvesting comparisons, what exactly is needed and 38 companies to contact in IoT, LPWAN and so on. Chapter 3 explains 12 photovoltaic technologies and their future with many infograms. Significance of the 2020 Garmin smartwatch having solar glass, why is stretchable photovoltaics coming in? It is all here.
 
Chapter 4 explains why IDTechEx believes triboelectrics is coming from nowhere with its initial sales of dust-filtering self-charging face masks in 2019 to be a strong contender overall. It will use non-toxic, affordable materials in a dazzling array of applications. An example is work on a smartwatch integral battery + harvester in one smart composite. The Chinese government is massively supporting triboelectric harvester research with many research centres and over 200 PhD projects at a time.
 
Chapter 5 explores the burgeoning thermoelectric improvements and applications from smartwatches to IoT nodes and fit-and-forget industrial uses. Pyroelectrics get less mention because of its poor potential. Chapter 6 surprises with electrodynamics technology presented and how has already replaced tens of millions of batteries by using microturbine generators in electronic toilets and pipeline sensors, similar electrodynamics in Seiko, Swatch, Tissot and many more watches. Hand-crank and pull-charged medical and consumer electronics are proliferating. Why the big effort on electrodynamic and thermoelectric harvesting in humans? We need fit-and-forget implants dealing with the epidemic of diabetes. The pacemaker has already saved over three million lives but the 600,000 pacemakers now implanted every year have batteries lasting no more than seven years. That is part of the answer.
 
Chapter 7 does it all for piezoelectrics. Chapter 8 rounds off with harvesting man-made ambient electromagnetic radiation from 50Hz power lines to the new terahertz inventions and also other harvesting options.
 
Throughout these technology chapters there are common themes such as the immense amount of new work on flexible, transparent, biocompatible and stretchable versions and how they will transform wearables and healthcare. Another over-arching theme is battery elimination even extending to woven supercapacitors or no storage at all. Throughout there are many ghost diagrams, photographs and infograms. It is based on 20 years of ongoing research by multilingual PhD level experts travelling, interviewing and benchmarking. The report's emphasis is on creating new business, including identification of gaps in the market. There is much on the new advanced materials needed, on harvester opportunities and new products benefiting society.

 



ページTOPに戻る


目次

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. Primary conclusions: market and technology dynamics
1.2.1. Market
1.3. Primary conclusions: technology specifics
1.4. Primary conclusions: Emerging industries
1.4.1. Internet of Things and LPWAN potential
1.4.2. Healthcare
1.4.3. Military, industrial, automotive and aerospace
1.5. Multimode harvesting, no battery
1.6. Device power harvested and needed in device use with examples
1.7. Power range needed
1.8. Energy harvesting options to power electronic devices
1.9. Most promising future applications by preferred technology
1.10. Energy harvesting for electronics forecasts
1.10.1. Summary and roadmap 2020-2040
1.10.2. Photovoltaic energy harvesting for electronics: units, unit price, market value 2020-2040
1.10.3. Thermoelectric energy harvesting for electronics: units, unit price, market value 2020-2040
1.10.4. Piezoelectric energy harvesting for electronics: market units, unit price, market value 2020-2040
1.10.5. Triboelectric transducer and self-powered sensors 2020-2040 $ million
1.10.6. Electrodynamic energy harvesting for electronics: units, unit price, market value 2020-2040
1.10.7. Forecast for pico products with integral harvesting
1.11. Addressable end uses for energy harvesting for electronics
1.11.1. Wearable technology
1.11.2. Augmented reality AR / virtual reality VR
1.11.3. Cardiac monitoring skin patches
1.11.4. Skin patches for continuous diabetes management
1.11.5. Medical motion sensing patches
1.11.6. Haptics
1.11.7. Mobile phones
1.11.8. Battery assisted and active RFID
1.11.9. Low power WAN connections 2020-2030
1.12. Li-ion battery demand, GWh 2020-2030 and price trend
2. NEW MARKET TRENDS
2.1. Overview
2.2. Features of energy harvesting for electronic devices
2.3. Energy harvesting system design
2.4. Picogrids
2.5. Pico products
2.6. Power offered: technology choices for harvesting
2.7. Move to flexible and multi-mode harvesters
2.8. Trend to flexible energy harvesting and sensing
2.9. Energy harvesting of motion: transducer options compared
2.9.1. Vibration harvesting
2.9.2. Harvesting for wearables and mobile phones
2.9.3. Hug opportunities in IoT, LPWAN and allied areas
2.9.4. EH developers should talk to these 21 LPWAN silicon manufacturers
2.9.5. EH developers should talk to these 17 WPAN module and chipset makers
3. EMERGING PHOTOVOLTAIC TECHNOLOGY FOR ELECTRONICS
3.1. Examples of photovoltaics in electronic devices
3.2. PV mechanisms: status, benefits, challenges, market potential compared
3.3. Wafer vs thin film photovoltaics 2020-2040
3.4. Photovoltaic trends and priorities 2020-2040
3.5. Single crystal scSi vs polycrystal pSi
3.6. Amorphous silicon dead end
3.7. Thin film more efficient than rigid silicon 2030-2040?
3.8. Important PV options beyond silicon compared
3.9. Production readiness of Si alternatives for mainstream electronics
3.10. Best research-cell efficiencies 1975-2020
3.11. Photovoltaic wild cards: 2D semiconductors, quantum dots, rectenna arrays
4. TRIBOELECTRIC HARVESTING TECHNOLOGY FOR ELECTRONICS
4.1. Overview
4.2. Basics
4.3. Targeted applications
4.3.1. Performance available matched to potential applications
4.3.2. Some targeted medical applications
4.3.3. Battery free electronics: toys, biosensors, wearables
4.3.4. Transparent, stretchable: an example
4.3.5. Wind, river or tidal generation for electronic devices
4.4. Triboelectric dielectric series
4.5. Materials opportunities
4.6. Work combining TENG with other harvesting
5. THERMOELECTRIC AND PYROELECTRIC HARVESTING FOR ELECTRONICS
5.1. Basics
5.1.1. Thermoelectric generator design considerations
5.1.2. Thermoelectric harvester improvement 2020-2040
5.1.3. TEG layouts and materials
5.1.4. TEG material choices and improvement roadmap
5.1.5. Thin film thermoelectric generators
5.1.6. TEG materials, processing and designs compared
5.2. SOFT report on TE for electronics
5.3. Examples of commercial and imminent applications
5.4.  

ページTOPに戻る


 

Summary

このレポートはエレクトロニックデバイス向けの環境発電デバイスに注目し、課題や可能性、予測/主要企業/市場促進要因の比較、バッテリーが不要になるまでのマイルストーンについて言及、分析しています。

主な掲載内容  ※目次より抜粋

  • エグゼクティブサマリと結論
  • 新しい市場動向
  • エレクトロニクス向けの新しい太陽光発電技術
  • エレクトロニクス向け摩擦発電技術
  • エレクトロニクス向け熱発電と焦電発電
  • 電気力学
  • 圧電性
  • 人工環境電磁放射、その他

Report Details

The new 215 page IDTechEx report, "Energy Harvesting for Electronic Devices 2020-2040" comes at just the right time. The world's first self-powered smartwatches have just arrived. They are not full-function but we are getting there. That billion a year harvester potential will be followed by similar numbers of Internet of Things nodes but why will Tesla jump in? Energy harvesting is a key enabling technology for these when it was not the case for the emergence of mobile phones and computers. Indeed, the hand crank/solar radio graduating to be the pendulum generator/solar watch shows how two forms of harvesting in one device are increasingly seen, one smartwatch melding thermoelectrics and solar.
 
Indeed, wireless, no-battery building controls harvest up to three modes. That multiplier effect powers demand well beyond $2 billion in 2030 and much more beyond, on IDTechEx 20 year forecasts. What next? Winners? Losers? Technology and sales forecasts? All in the report because of its unique scope and PhD level insights. Low power wireless networks, 5G, smart skin patches electrically powered by sweat, implants and medical wearables triboelectrically and electrodynamically powered by heartbeats, temperature differences, body movements. All are on the way but there is more.
 
The 25 page executive summary and conclusions is easily read by those in a hurry. Many new infograms pull together the needs, challenges, potential and compare forecasts/ leaders/ market drivers and battery elimination milestones ahead. Dip into the next 25 pages of new 20 year forecasts as you wish - triboelectric, photovoltaic, electrodynamic, thermoelectric, piezoelectric and other backed by forecasts for those smartwatches, pico products, wearable technologies, medical, IoT and other uses. Understand why Apple and Boeing will be involved.
 
Chapter 2 introduces the principles, compares the technologies in many ways including vibration harvesting comparisons, what exactly is needed and 38 companies to contact in IoT, LPWAN and so on. Chapter 3 explains 12 photovoltaic technologies and their future with many infograms. Significance of the 2020 Garmin smartwatch having solar glass, why is stretchable photovoltaics coming in? It is all here.
 
Chapter 4 explains why IDTechEx believes triboelectrics is coming from nowhere with its initial sales of dust-filtering self-charging face masks in 2019 to be a strong contender overall. It will use non-toxic, affordable materials in a dazzling array of applications. An example is work on a smartwatch integral battery + harvester in one smart composite. The Chinese government is massively supporting triboelectric harvester research with many research centres and over 200 PhD projects at a time.
 
Chapter 5 explores the burgeoning thermoelectric improvements and applications from smartwatches to IoT nodes and fit-and-forget industrial uses. Pyroelectrics get less mention because of its poor potential. Chapter 6 surprises with electrodynamics technology presented and how has already replaced tens of millions of batteries by using microturbine generators in electronic toilets and pipeline sensors, similar electrodynamics in Seiko, Swatch, Tissot and many more watches. Hand-crank and pull-charged medical and consumer electronics are proliferating. Why the big effort on electrodynamic and thermoelectric harvesting in humans? We need fit-and-forget implants dealing with the epidemic of diabetes. The pacemaker has already saved over three million lives but the 600,000 pacemakers now implanted every year have batteries lasting no more than seven years. That is part of the answer.
 
Chapter 7 does it all for piezoelectrics. Chapter 8 rounds off with harvesting man-made ambient electromagnetic radiation from 50Hz power lines to the new terahertz inventions and also other harvesting options.
 
Throughout these technology chapters there are common themes such as the immense amount of new work on flexible, transparent, biocompatible and stretchable versions and how they will transform wearables and healthcare. Another over-arching theme is battery elimination even extending to woven supercapacitors or no storage at all. Throughout there are many ghost diagrams, photographs and infograms. It is based on 20 years of ongoing research by multilingual PhD level experts travelling, interviewing and benchmarking. The report's emphasis is on creating new business, including identification of gaps in the market. There is much on the new advanced materials needed, on harvester opportunities and new products benefiting society.

 



ページTOPに戻る


Table of Contents

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1. Purpose of this report
1.2. Primary conclusions: market and technology dynamics
1.2.1. Market
1.3. Primary conclusions: technology specifics
1.4. Primary conclusions: Emerging industries
1.4.1. Internet of Things and LPWAN potential
1.4.2. Healthcare
1.4.3. Military, industrial, automotive and aerospace
1.5. Multimode harvesting, no battery
1.6. Device power harvested and needed in device use with examples
1.7. Power range needed
1.8. Energy harvesting options to power electronic devices
1.9. Most promising future applications by preferred technology
1.10. Energy harvesting for electronics forecasts
1.10.1. Summary and roadmap 2020-2040
1.10.2. Photovoltaic energy harvesting for electronics: units, unit price, market value 2020-2040
1.10.3. Thermoelectric energy harvesting for electronics: units, unit price, market value 2020-2040
1.10.4. Piezoelectric energy harvesting for electronics: market units, unit price, market value 2020-2040
1.10.5. Triboelectric transducer and self-powered sensors 2020-2040 $ million
1.10.6. Electrodynamic energy harvesting for electronics: units, unit price, market value 2020-2040
1.10.7. Forecast for pico products with integral harvesting
1.11. Addressable end uses for energy harvesting for electronics
1.11.1. Wearable technology
1.11.2. Augmented reality AR / virtual reality VR
1.11.3. Cardiac monitoring skin patches
1.11.4. Skin patches for continuous diabetes management
1.11.5. Medical motion sensing patches
1.11.6. Haptics
1.11.7. Mobile phones
1.11.8. Battery assisted and active RFID
1.11.9. Low power WAN connections 2020-2030
1.12. Li-ion battery demand, GWh 2020-2030 and price trend
2. NEW MARKET TRENDS
2.1. Overview
2.2. Features of energy harvesting for electronic devices
2.3. Energy harvesting system design
2.4. Picogrids
2.5. Pico products
2.6. Power offered: technology choices for harvesting
2.7. Move to flexible and multi-mode harvesters
2.8. Trend to flexible energy harvesting and sensing
2.9. Energy harvesting of motion: transducer options compared
2.9.1. Vibration harvesting
2.9.2. Harvesting for wearables and mobile phones
2.9.3. Hug opportunities in IoT, LPWAN and allied areas
2.9.4. EH developers should talk to these 21 LPWAN silicon manufacturers
2.9.5. EH developers should talk to these 17 WPAN module and chipset makers
3. EMERGING PHOTOVOLTAIC TECHNOLOGY FOR ELECTRONICS
3.1. Examples of photovoltaics in electronic devices
3.2. PV mechanisms: status, benefits, challenges, market potential compared
3.3. Wafer vs thin film photovoltaics 2020-2040
3.4. Photovoltaic trends and priorities 2020-2040
3.5. Single crystal scSi vs polycrystal pSi
3.6. Amorphous silicon dead end
3.7. Thin film more efficient than rigid silicon 2030-2040?
3.8. Important PV options beyond silicon compared
3.9. Production readiness of Si alternatives for mainstream electronics
3.10. Best research-cell efficiencies 1975-2020
3.11. Photovoltaic wild cards: 2D semiconductors, quantum dots, rectenna arrays
4. TRIBOELECTRIC HARVESTING TECHNOLOGY FOR ELECTRONICS
4.1. Overview
4.2. Basics
4.3. Targeted applications
4.3.1. Performance available matched to potential applications
4.3.2. Some targeted medical applications
4.3.3. Battery free electronics: toys, biosensors, wearables
4.3.4. Transparent, stretchable: an example
4.3.5. Wind, river or tidal generation for electronic devices
4.4. Triboelectric dielectric series
4.5. Materials opportunities
4.6. Work combining TENG with other harvesting
5. THERMOELECTRIC AND PYROELECTRIC HARVESTING FOR ELECTRONICS
5.1. Basics
5.1.1. Thermoelectric generator design considerations
5.1.2. Thermoelectric harvester improvement 2020-2040
5.1.3. TEG layouts and materials
5.1.4. TEG material choices and improvement roadmap
5.1.5. Thin film thermoelectric generators
5.1.6. TEG materials, processing and designs compared
5.2. SOFT report on TE for electronics
5.3. Examples of commercial and imminent applications
5.4.  

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります


よくあるご質問


IDTechEx社はどのような調査会社ですか?


IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/07/04 10:27

162.47 円

175.74 円

209.86 円

ページTOPに戻る