1. |
EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. |
Purpose of this report |
1.2. |
Overall conclusions |
1.3. |
Urban vs inter-city: buses vs trucks |
1.4. |
Powertrain options for buses and trucks |
1.5. |
Pure electric vehicle viability vs energy storage kWh in bus/truck 2010-2040 |
1.6. |
Battery parameters in pure electric buses and trucks 2019 |
1.7. |
China - extra $1 billion battery market for school buses? |
1.8. |
Choosing energy storage for buses and trucks: lithium-ion batteries dominate |
1.9. |
Energy density improvement of energy storage systems by storage type 2019-2029 |
1.10. |
Battery replacement: supercapacitor viability vs capacity kWh in bus/truck 2010-2040 |
1.11. |
Less battery: supercapacitor, fuel cell combinations |
1.12. |
Less battery: dynamically charged then energy independent electric buses and trucks |
1.13. |
Less battery: the Class 8 truck battle between fuel cells and batteries |
1.14. |
Market forecast 2019-2029 |
1.14.1. |
Hybrid and pure electric buses and trucks: numbers (thousand) 2019-2029 |
1.14.2. |
Hybrid and pure electric buses and trucks: unit (kWh) 2019-2029 |
1.14.3. |
Hybrid and pure electric buses and trucks: gross (million kWh) 2019-2029 |
1.14.4. |
Hybrid and pure electric buses and trucks: total battery market value ($ billion) 2019-2029 |
1.14.5. |
LDV truck - Market forecasts (GWh) 2019-2029 |
1.14.6. |
LDV truck - Market forecasts (GWh) by battery chemistry 2019-2029 |
1.14.7. |
MDV/HDV truck - Market forecasts (GWh) 2019-2029 |
1.14.8. |
MDV/HDV truck - Market forecasts (GWh) by battery chemistry 2019-2029 |
1.14.9. |
E-truck forecasts by powertrain in California |
1.14.10. |
China commercial vehicle sales EV vs ICE 2008-2017 |
1.14.11. |
North America bus sales breakdown 2009-2017 |
2. |
INTRODUCTION |
2.1. |
Electric buses and light electric EVs: future urban mobility |
2.2. |
Upcoming restrictions for commercial vehicles push electrification |
2.3. |
Transport of people 2025 |
2.4. |
Urban pollution |
2.4.1. |
Types |
2.4.2. |
Emissions cause much more injury than previously realised |
2.4.3. |
CO2 emission from road transport |
2.4.4. |
CO2 emission limits enacted worldwide to 2025 |
2.5. |
Why go electric? Drivers of truck electrification |
2.6. |
Battery choices: |
2.6.1. |
Comparison of specific energy and energy density of various battery systems |
2.7. |
Cost projections in selected countries for various powertrains |
2.8. |
Economic viability of several zero-emission technologies |
2.9. |
Powertrain cost comparison |
2.9.1. |
China |
2.9.2. |
Europe |
2.9.3. |
USA |
2.10. |
Advantages and disadvantages of electric vs. fuel cell trucks |
2.11. |
Battery capacity vs gross vehicle weight |
2.12. |
Battery capacity vs passenger-range |
2.13. |
Passenger capacity vs e-bus weight |
2.14. |
Battle between fuel cell and battery |
2.14.1. |
Overview |
2.14.2. |
Nikola fuel cell hybrid or Tesla battery truck? |
2.14.3. |
Are Li-ion batteries viable for long-haul? |
2.14.4. |
Short haul Class 8 pure electric trucks |
2.14.5. |
Some medium sized fleets of fuel cell vehicles deployed |
2.14.6. |
Primary problems between battery and fuel cell on-road vehicles |
2.14.7. |
Batteries vs fuel cells - cost |
2.14.8. |
Batteries vs. fuel cells - efficiency |
3. |
BUSES AND THEIR ENERGY STORAGE |
3.1. |
Focus of this chapter |
3.2. |
Types of bus |
3.3. |
Population rises, cities dominate, parking unsustainable |
3.4. |
Why adopt buses? |
3.5. |
Why go electric? |
3.5.1. |
Drivers of bus electrification |
3.5.2. |
Emissions cause much more injury than previously realised |
3.5.3. |
Benefits of pure electric bus powertrains and to some extent hybrid |
3.6. |
Examples of leadership: focus on pure electric now |
3.7. |
Bus powertrain trend, value chain rewritten |
3.7.1. |
Powertrain trend |
3.7.2. |
Value chain rewritten |
3.8. |
Buses 2010-2030: an industry reborn |
3.9. |
Market drivers |
3.9.1. |
Prosperity collides with urbanisation |
3.9.2. |
Changes in society and technology feed off each other |
3.10. |
Traction batteries |
3.11. |
Traction supercapacitors for hybrid buses |
3.12. |
Traction supercapacitors for pure electric buses |
3.13. |
Charging the battery |
3.13.1. |
Overview |
3.13.2. |
Example: ABB TOSA: |
3.13.3. |
Contactless charging |
3.14. |
Towards energy independence: increasing bus range |
3.15. |
Energy Independent Electric Vehicles EIV |
3.15.1. |
Disruptive |
3.15.2. |
Energy independent electric bus: NFH-H microbus China |
3.15.3. |
Energy positive large buses will come |
3.16. |
League table of EV manufacturers 2018 $ billion: winners make buses |
3.17. |
China buses go global: cost advantages |
3.17.1. |
China cost advantage plotted |
3.17.2. |
How can bus manufacturers outside China compete? |
3.18. |
Cheaper to buy is the killer blow for adoption of pure electric buses 2022 onwards |
3.19. |
Technologies important for |
3.20. |
Bus technology timeline 2018-2040 |
3.21. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2019 |
3.22. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2020 |
3.23. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2021 |
3.24. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2022 |
3.25. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2023/2024 |
3.26. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2025/2026 |
3.27. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2027/2028 |
3.28. |
Hybrid and pure electric bus orders, intentions and manufacturing initiatives 2030 |
3.29. |
Proliferations of bus types and crossovers |
3.30. |
Record bus range |
4. |
TRUCKS AND THEIR ENERGY STORAGE |
4.1. |
The worldwide freight transport industry |
4.1.1. |
Multi-modal |
4.1.2. |
Freight transport on roads |
4.1.3. |
Truck classifications |
4.1.4. |
Different segments of goods transportation by land |
4.1.5. |
Characteristics of popular on-road trucks |
4.2. |
Electrification of trucks |
4.2.1. |
Market dynamics |
4.2.2. |
Electric powertrain options for trucks |
4.2.3. |
Benefits from truck and van electrification |
4.2.4. |
More carrot, more stick |
4.2.5. |
Value chain rewritten |
4.2.6. |
Ramping up electric trucks |
4.2.7. |
Pure electric vehicle adoption dynamics |
4.2.8. |
TEVA / JAC example of hybrid |
4.2.9. |
48V mild hybrid |
4.2.10. |
Small trucks / vans go straight to pure electric |
4.2.11. |
Specialty vehicle electrification |
4.3. |
Need for a systems approach |
4.4. |
Hybrid upfit system for trucks |
4.5. |
Design issues: battery minimisation |
4.6. |
Top truck manufacturers 2017 |
5. |
LITHIUM-ION BATTERIES |
5.1. |
Basic operation of a Li-ion cell |
5.2. |
Current challenges facing automotive Li-ion batteries |
5.3. |
The main components of a battery cell |
5.4. |
Lithium-ion battery components, functions, and main materials |
5.5. |
Lithium-ion battery cell, module and pack |
5.6. |
Cost analysis for automotive Li-ion batteries |
5.7. |
Mapping: top electric bus manufacturers and Li-ion battery pack suppliers |
5.8. |
Examples of top electric buses, battery type and performance |
5.9. |
LIB cell cost ($/kWh) forecasts according to IDTechEx |
5.10. |
The world is building gigafactories |
5.10.1. |
LIB production forecasts (GWh/year) |
5.10.2. |
LIB production forecasts - electric vehicles |
5.10.3. |
LIB production forecasts - other markets |
5.11. |
LIB market forecasts ($B/year) |
5.12. |
LIB standard chemistries in 2018, 2023, and 2028 |
5.13. |
What does 1 kilowatthour (kWh) look like? |
5.14. |
Commercial battery packaging technologies |
5.14.1. |
Comparison of commercial battery packaging technologies |
5.15. |
Cooling systems for LIBs |
5.16. |
Push and pull factors in Li-ion research |
5.17. |
The battery trilemma |
5.18. |
A quote from Thomas Edison on batteries |
5.19. |
Performance goes up, cost goes down |
5.20. |
Li-ion raw materials in perspective |
5.21. |
LTO - Toshiba |
5.22. |
Anode alternatives - silicon, tin and alloying materials |
5.23. |
Cathode recap |
5.24. |
Li-ion battery cathode recap |
5.25. |
Inactive materials negatively affect energy density |
5.26. |
Comparison between inorganic and polymer electrolytes |
5.27. |
Lithium-ion batteries vs. Solid-State batteries |
5.28. |
Critical aspects of solid electrolytes |
5.29. |
Solid electrolytes - Toyota Motors |
5.30. |
Ways to get above 250 Wh/kg |
5.31. |
LGChem's view of future batteries |
5.32. |
Li-ion vs. future Li-ion vs. beyond Li-ion |
5.33. |
A family tree of batteries - Li-ion |
5.34. |
Benchmarking of theoretical battery performance |
5.35. |
Benchmarking of practical battery performance |
5.36. |
Battery technology benchmark - Comparison chart |
5.37. |
Battery technology benchmark - open challenges |
5.38. |
Rapid scale-up with rapid change of product spells trouble |
5.39. |
Safety |
5.40. |
EVs catching fire get media attention, but ICEs are not immune to that either |
5.41. |
Battery choices at MAN Truck & Bus |
5.42. |
Bosch and batteries for trucks |
5.43. |
GVI - battery packs for delivery trucks |
5.44. |
EnerDel - battery packs for trucks |
6. |
SUPERCAPACITORS |
6.1. |
Types of capacitor |
6.2. |
Supercapacitors |
6.3. |
Nomenclature and benefits |
6.4. |
Improvements that will create large new markets |
6.4.1. |
Prioritisation |
6.4.2. |
Device active structures and gaps in the market |
6.4.3. |
The dream for supercapacitors and their derivatives: power & energy |
6.4.4. |
Other planned benefits |
6.4.5. |
Better supercapacitors a real prospect from 2019 research |
6.4.6. |
Electrolyte-electrode routes to desirable supercapacitor parameters |
6.5. |
Example of supercapacitors in heavy trucks |
6.6. |
Iveco and supercapacitors - a cost perspective |
6.7. |
Structural electronics: load bearing supercapacitors |
7. |
FUEL CELLS |
7.1. |
Fuel cell vehicles will never be mainstream |
7.2. |
Status in 2019 |
7.3. |
Fuel cells are dead. Long live fuel cells! |
7.4. |
The need for long range beyond range extenders |
7.5. |
Nikola Trucks |
7.5.1. |
Winning the zero emission Class 8 orders |
7.5.2. |
Nikola and Bosch partnership |
7.6. |
Ballard |
7.6.1. |
Ballard and Kenworth |
7.6.2. |
Ballard in UPS Delivery Van Trial California |
7.7. |
DHL/Streetscooter also trials fuel cell delivery vans |
7.8. |
Keyou |
8. |
ANALYSIS OF OVER 140 LITHIUM-BASED RECHARGEABLE BATTERY MANUF
ページTOPに戻る
IDTechEx社のエネルギー、電池 - Energy, Batteries分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
IDTechEx社はどのような調査会社ですか?
IDTechExはセンサ技術や3D印刷、電気自動車などの先端技術・材料市場を対象に広範かつ詳細な調査を行っています。データリソースはIDTechExの調査レポートおよび委託調査(個別調査)を取り扱う日... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|