Autonomous Surgical Robotics Market - A Global and Regional Analysis: Focus on Product Type, Application, End User, and Country - Analysis and Forecast, 2023-2033
Global Autonomous Surgical Robotics Market: An Overview The global autonomous surgical robotics market was valued at $1.81 billion in 2022 and is anticipated to reach $11.07 billion by 2033, wit... もっと見る
SummaryGlobal Autonomous Surgical Robotics Market: An OverviewThe global autonomous surgical robotics market was valued at $1.81 billion in 2022 and is anticipated to reach $11.07 billion by 2033, witnessing a CAGR of 17.45% during the forecast period 2023-2033. This growth can be attributed to the factors that include the enhanced surgical capabilities offered by autonomous robotic-assisted surgeries, an upsurge in minimally invasive surgical procedures, technological advancements in autonomous surgical robotics, and supportive regulatory approvals for autonomous surgical robotic systems, driving competitiveness in the market. Market Lifecycle Stage The market lifecycle stage of the autonomous surgical robotics market can be described as being in the early growth or introduction phase. This market segment is characterized by the emergence of innovative technologies and products that have the potential to transform the field of surgery. Autonomous surgical robots are still relatively new and are gaining attention due to their ability to improve surgical precision, reduce human error, and enhance patient outcomes. While there is growing interest and investment in this technology, the market is not yet fully mature, and there is ample room for expansion and development. As more research and development efforts pour in and as regulatory approvals are obtained, the market is expected to move into the growth phase, attracting a wider customer base and achieving more widespread adoption within the medical industry. Industry Impact The global autonomous surgical robotics market is having a profound impact on the healthcare industry and related sectors. Autonomous surgical robots have significantly enhanced surgical precision and reduced the likelihood of human error. This has led to improved surgical outcomes, reduced OT complications, and has led to shorter recovery times for patients. Technology has positively impacted the overall quality of healthcare services. The market for autonomous surgical robotics has driven advancements in minimally invasive surgery as well. These robots are particularly well-suited for such procedures, enabling smaller incisions, thereby leading to quick patient recovery and less trauma. This trend toward minimally invasive surgery has transformed the way many surgical procedures are performed, resulting in a more patient-friendly approach. However, the shortage of skilled surgeons in many parts of the world is a growing concern. Autonomous surgical robots provide a viable solution by assisting surgeons, extending their capabilities, and potentially enabling remote surgery. This addresses the challenge of uneven access to surgical expertise and helps fill the gaps in underserved regions. The global autonomous surgical robotics market is anticipated to grow at a robust pace due to the lucrative opportunities that lie within its domain, which include a massive scope for phenomenal profits through venturous investments, integrative industry-academia collaboration, the rise of advanced robotic technology, and an increase in the adoption of novel surgical applications. Some of the key trends that the market is moving toward include the rising technological innovations, such as next-generation robotic systems in the market. Market Segmentation: Segmentation 1: by Product Type • Robotic Systems • Consumables • Services Robotic Systems to Dominate the Global Autonomous Surgical Robotics Market (by Product Type) Based on product type, the robotics systems segment dominated the global autonomous surgical robotics market in FY2022. These advanced systems are gaining prominence due to their pivotal role in enhancing surgical procedures. With the ability to provide surgeons with precise control and dexterity, robotics systems have become a preferred choice in the autonomous surgical robotics market. Their capacity to minimize human error and improve patient outcomes makes them a vital component in the field of minimally invasive surgery. As the demand for more efficient and accurate surgical solutions continues to grow, robotics systems are expected to maintain their dominance, driving the market's evolution and expansion in the foreseeable future. Segmentation 2: by Application • Urology Surgery • Orthopedic Surgery • Cardiology Surgery • Head and Neck (including Neurology) Surgery • Other Surgeries Orthopedic Surgery to Dominate the Global Autonomous Surgical Robotics Market (by Application) Based on application, orthopedic surgery dominated the global autonomous surgical robotics market in FY2022. This surgical field has emerged as a frontrunner in harnessing the benefits of autonomous surgical robotics. The precision, accuracy, and consistent performance of robotic systems have proven to be especially valuable in orthopedic procedures such as joint replacements and spine surgery. Surgeons are increasingly relying on these technologies to improve patient outcomes and reduce the invasiveness of surgeries. As the aging population grows and the demand for orthopedic interventions rises, the dominance of autonomous surgical robotics in orthopedic surgery is expected to persist and contribute significantly to the overall growth of the market. Segmentation 3: by End User • Hospitals • Ambulatory Surgery Centers (ASCs) • Others Hospitals to Dominate the Global Autonomous Surgical Robotics Market (by End User) Based on end user, the hospitals segment dominated the global autonomous surgical robotics market in FY2022. These sophisticated surgical robotic systems are finding their primary home within hospital settings. Hospitals are at the forefront of adopting this technology due to its potential to improve patient care and surgical outcomes. The controlled environment, well-trained medical staff, and infrastructure in hospitals make them ideal places for the integration of autonomous surgical robotics. As the demand for advanced surgical techniques continues to rise, hospitals are expected to maintain their dominant position as key users of autonomous surgical robotics, ultimately driving the market's growth and evolution. Segmentation 4: by Region • North America • Europe • Asia-Pacific • Latin America • Rest-of-the-World Regions such as North America and Europe have technologically advanced healthcare systems and allocate considerable budgets to the healthcare segment, due to which these regions hold the maximum share in the global autonomous surgical robotics market. Regions such as Asia-Pacific, Latin America, and Rest-of-the-World are anticipated to register significant growth during the forecast period 2023-2033 owing to factors such as rising preference for minimally invasive surgeries, rising geriatric population, and increasing demand to streamline surgical workflows. Moreover, Asia-Pacific is expected to register the highest CAGR of 18.87% during the forecast period 2023-2033. The Asia-Pacific region is an emerging market due to the rise in per capita income and rapid advancements in autonomous robotic surgical platforms. The Asia-Pacific region includes countries such as Japan, China, and India. Among these countries, China acquired the dominant market share, followed by Japan and India. Several companies have their presence in Asia-Pacific, such as Stryker Corporation, Zimmer Biomet Holdings, Inc., and Medtronic plc. The growth of the Asia-Pacific autonomous surgical robotics market is expected to be strongly driven by the increase in disposable income per household. Recent Developments in the Global Autonomous Surgical Robotics Market • In September 2023, PROCEPT BioRobotics Corporation received Investigational Device Exemption (IDE) approval from the U.S. Food and Drug Administration (FDA). This approval would enable the company to investigate the safety and effectiveness of Aquablation therapy for the treatment of prostate cancer. • In May 2023, Robocath, Inc. launched its latest robotic platform, the R-One+, which could perform coronary angioplasties. • In October 2022, XACT Robotics Ltd. announced that its ACE Xtend Remote Control Unit received the U.S. Food and Drug Administration (FDA) clearance, allowing users to robotically insert and steer the XACT ACE Robotic System remotely from the control room. • In August 2022, THINK Surgical, Inc., an innovator in the field of orthopedic surgical robots, announced its entry into a development and distribution agreement with Curexo, Inc., a medical robotics specialist company based in South Korea. THINK and Curexo have a strong working relationship based on historical development collaboration, and Curexo distributes THINK's TSolution One platform in Korea and Vietnam. • In May 2022, XACT Robotics received FDA clearance that would expand support for ablation procedures. • In January 2022, Zimmer Biomet Holdings, Inc. partnered with American Hospital Dubai to provide advanced robotic-assisted training for orthopedic surgeons from the U.A.E. and the region. Demand – Drivers, Restraints, and Opportunities Market Demand Drivers: Enhanced Surgical Capabilities Offered by Autonomous Robotic-Assisted Surgeries: Enhanced surgical capabilities are a driving force behind the autonomous surgical robotics market. These capabilities empower robotic systems to perform a wider range of surgical procedures, both complex and delicate, which makes them increasingly valuable in the medical field. One of the primary ways that enhanced surgical capabilities drive the market is by enabling a more extensive range of surgical procedures. Furthermore, there is an increased adoption of robotic-assisted surgeries owing to the several advantages over conventional as well as laparoscopic surgeries. Market Restraints: High Cost of Investment in Autonomous Robotic Surgical Systems: One of the major challenges in the autonomous surgical robotics market is the high capital cost of robotic systems, their associated instruments, and maintenance services. Currently, autonomous surgical robotics systems have a very high initial cost, requiring an arrangement for considerable capital investment from independent private surgeons and hospitals. All autonomous surgical robotic system manufacturers face several cost-associated challenges in convincing end users to purchase a robotic system. Market Opportunities: Preference of Telerobotic-Based Surgeries to Overcome Lack of Skilled Professional Surgeons: The preference for Telerobotic-based surgeries is emerging as a powerful opportunity for the autonomous surgical robotics market, particularly in overcoming the challenge of a shortage of skilled professional surgeons. The preference for telerobotic-based surgeries is fundamentally rooted in the shortage of skilled professional surgeons in many parts of the world. As populations grow and age, the demand for surgical interventions increases, and the supply of experienced surgeons often falls short. How can this report add value to an organization? Workflow/Innovation Strategy: The autonomous surgical robotics market (by application) has been segmented into different types of surgeries performed using autonomous surgical robots. Moreover, the study provides the procedure volume as well for these surgeries to provide a detailed understanding of how the different surgeries are expected to grow. Growth/Marketing Strategy: To foster growth and success in the autonomous surgical robotics market, a comprehensive marketing strategy is crucial. Establishing strategic partnerships with device manufacturers and obtaining regulatory approvals swiftly will be key for market penetration. Customer-focused marketing that highlights the enhanced patient outcomes and cost-effectiveness of autonomous surgical robotics is essential. Competitive Strategy: Key players in the global autonomous surgical robotics market have been analyzed and profiled in the study, including manufacturers involved in new product launches, acquisitions, expansions, and strategic collaborations. Moreover, a detailed competitive benchmarking of the players operating in the global autonomous surgical robotics market has been done to help the reader understand how players stack against each other, presenting a clear market landscape. Additionally, comprehensive competitive strategies such as partnerships, agreements, and collaborations will aid the reader in understanding the untapped revenue pockets in the market. Methodology Key Considerations and Assumptions in Market Engineering and Validation • The base year considered for the calculation of the market size is 2022. The historical year analysis has been done from FY2020 to FY2021, and the market size has been calculated for FY2022 and projected for the period 2023-2033. • The geographical distribution of the market revenue is estimated to be the same as the company’s net revenue distribution. All the numbers are adjusted off to two digits after decimal for report presentation reasons. However, the real figures have been utilized for compound annual growth rate (CAGR) estimation. CAGR is calculated from 2023 to 2033. • The market has been mapped based on different types of products available in the market and based on several indications. All the key manufacturing companies that have a significant number of offerings to the autonomous surgical robotics market have been considered and profiled in the report. • In the study, the primary respondent’s verification has been considered to finalize the estimated market for the autonomous surgical robotics market. • The latest annual reports of each market player have been taken into consideration for market revenue calculation. • Market strategies and developments of key players have been considered for the calculation of sub-segment split. • The base currency considered for the market analysis is US$. Currencies other than the US$ have been converted to the US$ for all statistical calculations, considering the average conversion rate for that particular year. The currency conversion rate has been taken from the historical exchange rate of the Oanda website or from the annual reports of the respective company, if stated. Primary Research The key data points taken from the primary sources include: • Validation and triangulation of all the numbers and graphs • Validation of the report’s segmentation and key qualitative findings • Understanding of the numbers of the various markets for market type • Percentage split of individual markets for regional analysis Secondary Research Open Sources • National Center for Biotechnology Information (NCBI), PubMed, Science Direct, World Bank Group, Organisation for Economic Co-operation and Development (OECD), Centers for Disease Control and Prevention (CDC), Global Burden Disease (GBD), and World Health Organization (WHO) • Annual reports, SEC filings, and investor presentations of the leading market players • Company websites and detailed study of their portfolio • Gold standard magazines, journals, whitepapers, press releases, and news articles • Databases The key data points taken from the secondary sources include: • Segmentations, split-ups, and percentage shares • Data for market value • Key industry trends of the top players in the market • Qualitative insights into various aspects of the market, key trends, and emerging areas of innovation • Quantitative data for mathematical and statistical calculations Key Market Players and Competition Synopsis Autonomous surgical robotics is a cutting-edge field that combines artificial intelligence (AI), robotics, and medical technology to enable precise and automated surgical procedures. These systems have the potential to revolutionize the healthcare landscape by enhancing surgical accuracy, reducing human error, and enabling minimally invasive surgeries. The global market for autonomous surgical robotics is on a trajectory of witnessing substantial growth, driven by the increasing adoption of minimally invasive surgeries, technological advancements with respect to surgical equipment, and the need for enhanced surgical capabilities. The healthcare system is adopting advanced technologies, especially in the field of surgical medicine, to improve surgical workflow patterns and derive quality and accurate clinical outcomes. The use of an autonomous surgical robotic system offers a safer surgical procedure by making it more accurate and minimally invasive for patients. Some of the prominent companies in this market are: • Beijing Baihui Weikang Technology Co., Ltd. • Curexo, Inc. • Globus Medical, Inc. • Medtronic plc • PROCEPT BioRobotics Corporation • Renishaw plc • Robocath, Inc. • Stryker Corporation • Surgical Automations, Inc. • Veebot Systems, Inc. • Venus Concept Inc. • Zimmer Biomet Holdings, Inc. Companies that are not a part of the aforementioned pool have been well represented across different sections of the report (wherever applicable). Table of Contents1 Definitions1.1 Product Definition 1.2 Inclusion and Exclusion Criteria 2 Market Scope 2.1 Key Questions Answered in this Report 3 Research Methodology 3.1 Global Autonomous Surgical Robotics Market 3.2 Data Sources 3.2.1 Primary Data Sources 3.2.2 Secondary Data Sources 3.3 Market Estimation Model 3.3.1 Assumptions and Limitations 3.3.2 Global Market Scenario 3.3.2.1 Realistic Growth Scenario 3.3.2.2 Optimistic Scenario 3.3.2.3 Pessimistic Scenario 3.4 Criteria for Company Profiling 4 Global Autonomous Surgical Robotics Market: Overview 4.1 Overview 4.2 Global Autonomous Surgical Robotics Market Overview (Glimpse into the Future) 4.2.1 North America 4.2.2 Europe 4.2.3 Asia-Pacific 4.2.4 Latin America 4.2.5 General Surgery 4.2.6 Urology Surgery 4.2.7 Orthopedic Surgery 4.2.8 Cardiology Surgery 4.2.9 Neurosurgery 4.2.10 Other Surgeries 4.3 Global Autonomous Surgical Robotics Market Industry Snapshot 4.3.1 Product Overview 4.3.2 Commercial Landscape by Product Type 4.3.2.1 Consumables (Instruments and Disposables) 4.3.2.2 Sensors 4.3.2.3 Electronic Parts 4.3.2.4 Mechanical Components 4.3.2.5 Visualization and Documentation 4.3.2.6 Accessories and Other Parts 4.3.3 Competitive Landscape by Product Suppliers to Original Equipment Manufacturers (OEMs) 4.3.3.1 Consumables (Instruments and Disposables) 4.3.3.1.1 Paragon Medical 4.3.3.1.1.1 Overview 4.3.3.1.1.2 Product Portfolio 4.3.3.1.1.3 Key Customers 4.3.3.1.1.4 Key Developments 4.3.3.1.2 Cadence, Inc. 4.3.3.1.2.1 Overview 4.3.3.1.2.2 Product Portfolio 4.3.3.1.2.3 Key Customers 4.3.3.1.2.4 Key Developments 4.3.3.1.3 Elos Medtech AB 4.3.3.1.3.1 Overview 4.3.3.1.3.2 Product Portfolio 4.3.3.1.3.3 Key Customers 4.3.3.1.4 Carolina Precision Technologies, LLC 4.3.3.1.4.1 Overview 4.3.3.1.4.2 Product Portfolio 4.3.3.1.4.3 Key Customers 4.3.3.1.5 ARCH Medical Solutions Corp 4.3.3.1.5.1 Overview 4.3.3.1.5.2 Product Portfolio 4.3.3.1.5.3 Key Customers 4.3.3.1.5.4 Key Developments 4.3.3.2 Sensors 4.3.3.2.1 TE Connectivity Ltd 4.3.3.2.1.1 Overview 4.3.3.2.1.2 Product Portfolio 4.3.3.2.1.3 Key Customers 4.3.3.2.2 FUTEK Advanced Sensor Technology, Inc. 4.3.3.2.2.1 Overview 4.3.3.2.2.2 Product Portfolio 4.3.3.2.2.3 Key Customers 4.3.3.2.3 Tekscan, Inc. 4.3.3.2.3.1 Overview 4.3.3.2.3.2 Product Portfolio 4.3.3.2.3.3 Key Customers 4.3.3.2.3.4 Recent Developments 4.3.3.2.4 Bota Systems AG 4.3.3.2.4.1 Overview 4.3.3.2.4.2 Product Portfolio 4.3.3.2.4.3 Key Customers 4.3.3.2.4.4 Key Developments 4.3.3.2.5 Strain Measurement Devices 4.3.3.2.5.1 Overview 4.3.3.2.5.2 Product Portfolio 4.3.3.2.5.3 Key Customers 4.3.3.2.6 Honeywell International Inc. 4.3.3.2.6.1 Overview 4.3.3.2.6.2 Product Portfolio 4.3.3.2.6.3 Key Customers 4.3.3.3 Electronic Parts 4.3.3.3.1 Celera Motion 4.3.3.3.1.1 Overview 4.3.3.3.1.2 Product Portfolio 4.3.3.3.1.3 Key Customers 4.3.3.3.1.4 Key Developments 4.3.3.3.2 AstrodyneTDI 4.3.3.3.2.1 Overview 4.3.3.3.2.2 Product Portfolio 4.3.3.3.2.3 Key Customers 4.3.3.3.2.4 Key Developments 4.3.3.3.3 ElectroCraft, Inc. 4.3.3.3.3.1 Overview 4.3.3.3.3.2 Product Portfolio 4.3.3.3.3.3 Key Customers 4.3.3.3.3.4 Recent Developments 4.3.3.3.4 HEIDENHAIN 4.3.3.3.4.1 Overview 4.3.3.3.4.2 Product Portfolio 4.3.3.3.4.3 Key Customers 4.3.3.3.4.4 Key Developments 4.3.3.3.5 Ewellix AB 4.3.3.3.5.1 Overview 4.3.3.3.5.2 Product Portfolio 4.3.3.3.5.3 Key Customers 4.3.3.3.5.4 Key Developments 4.3.3.4 Mechanical Components 4.3.3.4.1 Precipart 4.3.3.4.1.1 Overview 4.3.3.4.1.2 Product Portfolio 4.3.3.4.1.3 Key Customers 4.3.3.4.2 Designatronics Inc. 4.3.3.4.2.1 Overview 4.3.3.4.2.2 Product Portfolio 4.3.3.4.2.3 Key Customers 4.3.3.4.3 GCM 4.3.3.4.3.1 Overview 4.3.3.4.3.2 Product Portfolio 4.3.3.4.3.3 Key Customers 4.3.3.4.4 Kalman Manufacturing 4.3.3.4.4.1 Overview 4.3.3.4.4.2 Product Portfolio 4.3.3.4.4.3 Key Customers 4.3.3.4.5 WM Berg Inc. 4.3.3.4.5.1 Overview 4.3.3.4.5.2 Product Portfolio 4.3.3.4.5.3 Key Customers 4.3.3.4.6 Boly Metal Manufactory Ltd 4.3.3.4.6.1 Overview 4.3.3.4.6.2 Product Portfolio 4.3.3.4.6.3 Key Customers 4.3.3.5 Visualization and Documentation 4.3.3.5.1 Carl Zeiss AG 4.3.3.5.1.1 Overview 4.3.3.5.1.2 Product Portfolio 4.3.3.5.1.3 Key Customers 4.3.3.5.2 Feinwerkoptik Zünd AG 4.3.3.5.2.1 Overview 4.3.3.5.2.2 Product Portfolio 4.3.3.5.2.3 Key Customers 4.3.3.5.3 Gray Optics 4.3.3.5.3.1 Overview 4.3.3.5.3.2 Product Portfolio 4.3.3.5.3.3 Key Customers 4.3.3.5.4 Synaptive Medical 4.3.3.5.4.1 Overview 4.3.3.5.4.2 Product Portfolio 4.3.3.5.4.3 Key Customers 4.3.3.5.4.4 Key Developments 4.3.3.6 Accessories and Other Parts 4.3.3.6.1 UFP Technologies, Inc. 4.3.3.6.1.1 Overview 4.3.3.6.1.2 Product Portfolio 4.3.3.6.1.3 Key Customers 4.3.3.6.1.4 Key Developments 4.3.3.6.2 Lika Electronic Srl 4.3.3.6.2.1 Overview 4.3.3.6.2.2 Product Portfolio 4.3.3.6.2.3 Key Customers 4.3.3.6.2.4 Key Developments 4.3.3.6.3 Carl Stahl Sava Industries, Inc. 4.3.3.6.3.1 Overview 4.3.3.6.3.2 Product Portfolio 4.3.3.6.3.3 Key Customers 4.3.3.6.4 Swiss Precision Machining, LLC 4.3.3.6.4.1 Overview 4.3.3.6.4.2 Product Portfolio 4.3.3.6.4.3 Key Customers 4.3.3.6.4.4 Key Developments 4.3.4 Key Industrial Developments 4.3.4.1 Regulatory and Legal Activities 4.3.4.2 Funding Activities 4.3.4.3 New Offerings 4.3.4.4 Mergers and Acquisitions 4.3.4.5 Partnerships, Collaborations, and Business Expansions 4.3.5 Macro and Micro Industry Indicators 4.3.6 Cost Associated with Autonomous Surgical Robotics Procedures 4.3.7 Existing Unmet Needs and Risk Factors Associated with Autonomous Surgical Robotics Procedures 4.3.8 Future Potential of Autonomous Surgical Robotics Procedures 5 Global Autonomous Surgical Robotics Market: Industry Analysis 5.1 Market Dynamics 5.1.1 Impact Analysis 5.1.2 Business Drivers 5.1.2.1 Enhanced Surgical Capabilities Offered by Autonomous Robotic-Assisted Surgeries 5.1.2.2 Continuous Technological Advancements Leading to the Growth of Autonomous Surgical Robotics 5.1.2.3 Growing Preference Towards Minimally Invasive Surgeries Driving the Autonomous Surgical Robotics Market 5.1.2.4 Regulatory Approvals for Autonomous Surgical Robotic Systems 5.1.2.5 Other Micro Drivers Responsible for Growth 5.1.3 Business Restraints 5.1.3.1 High Cost of Investment in Autonomous Robotic Surgical Systems 5.1.3.2 Limitations Associated with Autonomous Surgical Robots 5.1.4 Business Opportunities 5.1.4.1 Preference of Telerobotic-based Surgeries to Overcome Lack of Skilled Professional Surgeons 5.1.4.2 Further Evolution of Technologies toward Autonomous Surgical Systems 5.2 Supply Chain Analysis 5.3 Value Chain Analysis 5.3.1 Research and Product Development 5.3.2 Manufacturing 5.3.3 Testing and Quality Check 5.3.4 Distribution and Post-Sale Services 5.4 Sales and Marketing Strategies 5.4.1 Sales Strategies 5.4.2 Marketing Strategies 5.5 Regional Market Attractiveness Analysis 5.6 Pricing and Reimbursement Analysis 5.6.1 Autonomous Surgical Robotics Procedure Reimbursement (U.S.) 6 Global Autonomous Surgical Robotics Market (by Product Type) 6.1 Overview 6.2 Robotic Systems 6.2.1 Telerobotic Surgical Systems 6.2.2 Autonomous Surgical Systems 6.3 Consumables 6.3.1 Telerobotic Surgical Systems 6.3.2 Autonomous Surgical Systems 6.4 Services 6.4.1 Telerobotic Surgical Systems 6.4.2 Autonomous Surgical Systems 7 Global Autonomous Surgical Robotics Market (by Application) 7.1 Overview 7.2 Urology Surgery 7.2.1 By Procedure 7.2.2 By Value 7.3 Orthopedic Surgery 7.3.1 By Procedure 7.3.2 By Value 7.4 Cardiology Surgery 7.4.1 By Procedure 7.4.2 By Value 7.5 Head and Neck (including Neurology) Surgery 7.5.1 By Procedure 7.5.2 By Value 7.6 Other Surgeries 7.6.1 By Procedure 7.6.2 By Value 8 Global Autonomous Surgical Robotics Market (by End User) 8.1 Overview 8.2 Hospitals 8.3 Ambulatory Surgery Centers (ASCs) 8.4 Others 9 Global Autonomous Surgical Robotics Market (by Region) 9.1 North America 9.1.1 Market Sizing and Forecast Analysis 9.1.1.1 North America Autonomous Surgical Robotics Market (by Product Type) 9.1.1.2 North America Autonomous Surgical Robotics Market (Procedure Volume) 9.1.1.3 North America Autonomous Surgical Robotics Market (by Country) 9.1.1.3.1 U.S. 9.1.1.3.1.1 Market Sizing and Forecast Analysis 9.1.1.3.1.1.1 U.S. Autonomous Surgical Robotics Market (by Product Type) 9.1.1.3.1.1.2 U.S. Autonomous Surgical Robotics Market (Procedure Volume) 9.1.1.3.2 Canada 9.1.1.3.2.1 Market Sizing and Forecast Analysis 9.1.1.3.2.1.1 Canada Autonomous Surgical Robotics Market (by Product Type) 9.1.1.3.2.1.2 Canada Autonomous Surgical Robotics Market (Procedure Volume) 9.2 Europe 9.2.1 Market Sizing and Forecast Analysis 9.2.1.1 Europe Autonomous Surgical Robotics Market (by Product Type) 9.2.1.2 Europe Autonomous Surgical Robotics Market (Procedure Volume) 9.2.1.3 Europe Autonomous Surgical Robotics Market (by Country) 9.2.1.3.1 Germany 9.2.1.3.1.1 Market Sizing and Forecast Analysis 9.2.1.3.1.1.1 Germany Autonomous Surgical Robotics Market (by Product Type) 9.2.1.3.1.1.2 Germany Autonomous Surgical Robotics Market (Procedure Volume) 9.2.1.3.2 U.K. 9.2.1.3.2.1 Market Sizing and Forecast Analysis 9.2.1.3.2.1.1 U.K. Autonomous Surgical Robotics Market (by Product Type) 9.2.1.3.2.1.2 U.K. Autonomous Surgical Robotics Market (Procedure Volume) 9.2.1.3.3 France 9.2.1.3.3.1 Market Sizing and Forecast Analysis 9.2.1.3.3.1.1 France Autonomous Surgical Robotics Market (by Product Type) 9.2.1.3.3.1.2 France Autonomous Surgical Robotics Market (Procedure Volume) 9.2.1.3.4 Italy 9.2.1.3.4.1 Market Sizing and Forecast Analysis 9.2.1.3.4.1.1 Italy Autonomous Surgical Robotics Market (by Product Type) 9.2.1.3.4.1.2 Italy Autonomous Surgical Robotics Market (Procedure Volume) 9.2.1.3.5 Spain 9.2.1.3.5.1 Market Sizing and Forecast Analysis 9.2.1.3.5.1.1 Spain Autonomous Surgical Robotics Market (by Product Type) 9.2.1.3.5.1.2 Spain Autonomous Surgical Robotics Market (Procedure Volume) 9.3 Asia-Pacific 9.3.1 Market Sizing and Forecast Analysis 9.3.1.1 Asia-Pacific Autonomous Surgical Robotics Market (by Product Type) 9.3.1.2 Asia-Pacific Autonomous Surgical Robotics Market (Procedure Volume) 9.3.1.3 Asia-Pacific Autonomous Surgical Robotics Market (by Country) 9.3.1.3.1 Japan 9.3.1.3.1.1 Market Sizing and Forecast Analysis 9.3.1.3.1.1.1 Japan Autonomous Surgical Robotics Market (by Product Type) 9.3.1.3.1.1.2 Japan Autonomous Surgical Robotics Market (Procedure Volume) 9.3.1.3.2 China 9.3.1.3.2.1 Market Sizing and Forecast Analysis 9.3.1.3.2.1.1 China Autonomous Surgical Robotics Market (by Product Type) 9.3.1.3.2.1.2 China Autonomous Surgical Robotics Market (Procedure Volume) 9.3.1.3.3 India 9.3.1.3.3.1 Market Sizing and Forecast Analysis 9.3.1.3.3.1.1 India Autonomous Surgical Robotics Market (by Product Type) 9.3.1.3.3.1.2 India Autonomous Surgical Robotics Market (Procedure Volume) 9.4 Latin America 9.4.1 Market Sizing and Forecast Analysis 9.4.1.1 Latin America Autonomous Surgical Robotics Market (by Product Type) 9.4.1.2 Latin America Autonomous Surgical Robotics Market (Procedure Volume) 9.5 Rest-of-the-World 9.5.1 Market Sizing and Forecast Analysis 9.5.1.1 Rest-of-the-World Autonomous Surgical Robotics Market (by Product Type) 10 Company Profiles 10.1 Beijing Baihui Weikang Technology Co., Ltd. 10.1.1 Company Overview 10.1.2 Role of Beijing Baihui Weikang Technology Co., Ltd. in the Global Autonomous Surgical Robotics Market 10.1.3 Product Portfolio 10.1.4 Business and Commercial Strategy 10.1.5 Analyst Perspective 10.2 Curexo, Inc. 10.2.1 Company Overview 10.2.2 Role of the Curexo, Inc. in the Global Autonomous Surgical Robotics Market 10.2.3 Product Portfolio 10.2.4 Business and Commercial Strategy 10.2.5 Analyst Perspective 10.3 Globus Medical, Inc. 10.3.1 Company Overview 10.3.2 Role of Globus Medical, Inc. in the Global Autonomous Surgical Robotics Market 10.3.3 Product Portfolio 10.3.4 Financials 10.3.5 Business and Commercial Strategy 10.3.6 Analyst Perspective 10.4 Medtronic plc 10.4.1 Company Overview 10.4.2 Role of Medtronic plc in the Global Autonomous Surgical Robotics Market 10.4.3 Product Portfolio 10.4.4 Financials 10.4.5 Business and Commercial Strategy 10.4.6 Analyst Perspective 10.5 PROCEPT BioRobotics Corporation 10.5.1 Company Overview 10.5.2 Role of the PROCEPT BioRobotics Corporation in the Global Autonomous Surgical Robotics Market 10.5.3 Product Portfolio 10.5.4 Financials 10.5.5 Business and Commercial Strategy 10.5.6 Analyst Perspective 10.6 Renishaw plc 10.6.1 Company Overview 10.6.2 Role of Renishaw plc in the Global Autonomous Surgical Robotics Market 10.6.3 Product Portfolio 10.6.4 Financials 10.6.5 Business and Commercial Strategy 10.6.6 Analyst Perspective 10.7 Robocath, Inc. 10.7.1 Company Overview 10.7.2 Role of Robocath, Inc. in the Global Autonomous Surgical Robotics Market 10.7.3 Product Portfolio 10.7.4 Business and Commercial Strategy 10.7.5 Analyst Perspective 10.8 Stryker Corporation 10.8.1 Company Overview 10.8.2 Role of Stryker Corporation in the Global Autonomous Surgical Robotics Market 10.8.3 Product Portfolio 10.8.4 Financials 10.8.5 Business and Commercial Strategy 10.8.6 Analyst Perspective 10.9 Surgical Automations, Inc. 10.9.1 Company Overview 10.9.2 Role of Surgical Automations, Inc. in the Global Autonomous Surgical Robotics Market 10.9.3 Upcoming Product Portfolio 10.9.4 Analyst Perspective 10.1 Veebot Systems, Inc. 10.10.1 Company Overview 10.10.2 Role of Veebot Systems, Inc. in the Global Autonomous Surgical Robotics Market 10.10.3 Upcoming Product Portfolio 10.10.4 Analyst Perspective 10.11 Venus Concept Inc. 10.11.1 Company Overview 10.11.2 Role of Venus Concept Inc. in the Global Autonomous Surgical Robotics Market 10.11.3 Product Portfolio 10.11.4 Financials 10.11.5 Business and Commercial Strategy 10.11.6 Analyst Perspective 10.12 Zimmer Biomet Holdings, Inc. 10.12.1 Company Overview 10.12.2 Role of Zimmer Biomet Holdings, Inc. in the Global Autonomous Surgical Robotics Market 10.12.3 Product Portfolio 10.12.4 Financials 10.12.5 Business and Commercial Strategy 10.12.6 Analyst Perspective List of Figures Figure 1: Haptics Improve Surgeons’ Acceptability of Surgical Robotics Figure 2: Global Autonomous Surgical Robotics Market, $Billion, 2022-2033 Figure 3: Surgical Specialists Shortfall and Volume of Surgeries, U.S. Figure 4: Global Autonomous Surgical Robotics Market (by Application), $Billion, 2022 and 2033 Figure 5: Global Autonomous Surgical Robotics Market (by Product Type), $Billion, 2022 and 2033 Figure 6: Global Autonomous Surgical Robotics Market (by End User), $Billion, 2022 and 2033 Figure 7: Global Autonomous Surgical Robotics Market (by Region), $ Million, 2022-2033 Figure 8: Strategic Initiatives, 2017-2023 Figure 9: Global Autonomous Surgical Robotics Market Segmentation Figure 10: Global Autonomous Surgical Robotics Market: Research Methodology Figure 11: Primary Research Methodology Figure 12: Global Autonomous Surgical Robotics Market Research Process Figure 13: Global Autonomous Surgical Robotics Market Size and Growth Potential (Realistic Scenario), $Billion, 2022-2033 Figure 14: Global Autonomous Surgical Robotics Market Size and Growth Potential (Optimistic Scenario), $Billion, 2022-2033 Figure 15: Global Autonomous Surgical Robotics Market Size and Growth Potential (Pessimistic Scenario), $Billion, 2022-2033 Figure 16: Global Autonomous Surgical Robotics Market, $Billion, 2022-2033 Figure 17: Autonomous Surgical Robotics Procedures, Region, 2022 and 2033 Figure 18: North America: Glimpse into the Future Figure 19: Europe: Glimpse into the Future Figure 20: Asia-Pacific: Glimpse into the Future Figure 21: Latin America: Glimpse into the Future Figure 22: Paragon Medical: Company Overview Figure 23: Paragon Medical: Product Portfolio Figure 24: Cadence, Inc.: Company Overview Figure 25: Cadence, Inc.: Product Portfolio Figure 26: Elos Medtech AB: Company Overview Figure 27: Elos Medtech AB: Product Portfolio Figure 28: Carolina Precision Technologies, LLC: Company Overview Figure 29: Carolina Precision Technologies, LLC: Product Portfolio Figure 30: ARCH Medical Solutions Corp: Company Overview Figure 31: ARCH Medical Solutions Corp: Product Portfolio Figure 32: TE Connectivity Ltd: Company Overview Figure 33: TE Connectivity Ltd: Product Portfolio Figure 34: FUTEK Advanced Sensor Technology, Inc.: Company Overview Figure 35: FUTEK Advanced Sensor Technology, Inc.: Product Portfolio Figure 36: Tekscan, Inc.: Company Overview Figure 37: Tekscan, Inc.: Product Portfolio Figure 38: Bota Systems AG: Company Overview Figure 39: Bota Systems AG: Product Portfolio Figure 40: Strain Measurement Devices: Company Overview Figure 41: Strain Measurement Devices: Product Portfolio Figure 42: Honeywell International Inc.: Company Overview Figure 43: Honeywell International Inc.: Product Portfolio Figure 44: Celera Motion: Company Overview Figure 45: Celera Motion: Product Portfolio Figure 46: AstrodyneTDI: Company Overview Figure 47: AstrodyneTDI: Product Portfolio Figure 48: ElectroCraft, Inc.: Company Overview Figure 49: ElectroCraft, Inc.: Product Portfolio Figure 50: HEIDENHAIN: Company Overview Figure 51: HEIDENHAIN: Product Portfolio Figure 52: Ewellix AB: Company Overview Figure 53: Ewellix AB: Product Portfolio Figure 54: Precipart: Company Overview Figure 55: Precipart: Product Portfolio Figure 56: Designatronics Inc.: Company Overview Figure 57: Designatronics Inc.: Product Portfolio Figure 58: GCM: Company Overview Figure 59: GCM: Product Portfolio Figure 60: Kalman Manufacturing: Company Overview Figure 61: Kalman Manufacturing: Product Portfolio Figure 62: WM Berg Inc.: Company Overview Figure 63: WM Berg Inc.: Product Portfolio Figure 64: Boly Metal Manufactory Ltd: Company Overview Figure 65: Boly Metal Manufactory Ltd: Product Portfolio Figure 66: Carl Zeiss AG: Company Overview Figure 67: Carl Zeiss AG: Product Portfolio Figure 68: Feinwerkoptik Zünd AG: Company Overview Figure 69: Feinwerkoptik Zünd AG: Product Portfolio Figure 70: Gray Optics: Company Overview Figure 71: Gray Optics: Product Portfolio Figure 72: Synaptive Medical: Company Overview Figure 73: Synaptive Medical: Product Portfolio Figure 74: UFP Technologies, Inc.: Company Overview Figure 75: UFP Technologies, Inc.: Product Portfolio Figure 76: Lika Electronic Srl: Company Overview Figure 77: Lika Electronic Srl: Product Portfolio Figure 78: Carl Stahl Sava Industries, Inc.: Company Overview Figure 79: Carl Stahl Sava Industries, Inc.: Product Portfolio Figure 80: Swiss Precision Machining, LLC: Company Overview Figure 81: Swiss Precision Machining, LLC: Product Portfolio Figure 82: Share of Key Developments and Strategies, January 2017-September 2023 Figure 83: Regulatory and Legal Activities, January 2017-September 2023 Figure 84: Funding Activities, January 2017-September 2023 Figure 85: New Offerings, January 2017-September 2023 Figure 86: Mergers and Acquisitions, January 2017-September 2023 Figure 87: Partnerships, Alliances, and Business Expansions, January 2017-September 2023 Figure 88: Market Attractiveness Based on Key Industry Indicators Figure 89: Macro Industry Indicators for Global Autonomous Surgical Robotics Market Figure 90: Micro Industry Indicators for the Global Autonomous Surgical Robotics Market Figure 91: Key Cost Considerations: Autonomous Surgical Robotics Procedure Figure 92: Existing Unmet Needs Figure 93: Existing Risk Factors Figure 94: Future Potential Figure 95: Benefits of Autonomous Robotic-Assisted Surgery Figure 96: Evolution of Autonomous Surgical Robots Figure 97: Benefits of Robotic Surgeries for Patients and Surgeons Figure 98: Regulatory Approvals for Autonomous Surgical Robots Figure 99: Benefits of Telerobotic-based Surgeries to Overcome Lack of Skilled Professional Surgeons Figure 100: Technological Evolution toward Autonomous Surgical Systems Figure 101: Success of Telerobotic Surgery by 5G Figure 102: Further Miniaturization of Autonomous Surgical Robots Figure 103: Global Autonomous Surgical Robotics Market, Supply Chain Analysis Figure 104: Global Autonomous Surgical Robotics Market, Value Chain Analysis Figure 105: Regional Market Attractiveness Analysis Figure 106: Global Autonomous Surgical Robotics Market, Price Sensitivity Analysis Figure 107: Global Autonomous Surgical Robotics Market (by Product Type) Figure 108: Global Autonomous Surgical Robotics Market (Robotic Systems), $Billion, 2022-2033 Figure 109: Global Autonomous Surgical Robotics Market, Robotic Systems (Telerobotic Surgical Systems), $Billion, 2022-2033 Figure 110: Global Autonomous Surgical Robotics Market, Robotic Systems (Autonomous Surgical Systems), $Billion, 2022-2033 Figure 111: Global Autonomous Surgical Robotics Market (Consumables), $Billion, 2022-2033 Figure 112: Global Autonomous Surgical Robotics Market, Consumables (Telerobotic Surgical Systems), $Billion, 2022-2033 Figure 113: Global Autonomous Surgical Robotics Market, Consumables (Autonomous Surgical Systems), $Billion, 2022-2033 Figure 114: Global Autonomous Surgical Robotics Market (Services), $Billion, 2022-2033 Figure 115: Global Autonomous Surgical Robotics Market, Services (Telerobotic Surgical Systems), $Billion, 2022-2033 Figure 116: Global Autonomous Surgical Robotics Market, Services (Autonomous Surgical Systems), $Billion, 2022-2033 Figure 117: Global Autonomous Surgical Robotics Market (by Application) Figure 118: Global Autonomous Surgical Robotics Market (Urology Surgery), Procedure Volume, Million, 2022-2033 Figure 119: Global Autonomous Surgical Robotics Market (Urology Surgery), $Billion, 2022-2033 Figure 120: Global Autonomous Surgical Robotics Market (Orthopedic Surgery), Procedure Volume, Million, 2022-2033 Figure 121: Global Autonomous Surgical Robotics Market (Orthopedic Surgery), $Billion, 2022-2033 Figure 122: Global Autonomous Surgical Robotics Market (Cardiology Surgery), Procedure Volume, Million, 2022-2033 Figure 123: Global Autonomous Surgical Robotics Market (Cardiology Surgery), $Billion, 2022-2033 Figure 124: Global Autonomous Surgical Robotics Market (Head and Neck (including Neurology) Surgery), Procedure Volume, Million, 2022-2033 Figure 125: Global Autonomous Surgical Robotics Market (Head and Neck (including Neurology) Surgery), $Billion, 2022-2033 Figure 126: Global Autonomous Surgical Robotics Market (Other Surgeries), Procedure Volume, Million, 2022-2033 Figure 127: Global Autonomous Surgical Robotics Market (Other Surgeries), $Billion, 2022-2033 Figure 128: Global Autonomous Surgical Robotics Market (by End User) Figure 129: Global Autonomous Surgical Robotics Market (Hospitals), $Billion, 2022-2033 Figure 130: Global Autonomous Surgical Robotics Market (Ambulatory Surgery Centers), $Billion, 2022-2033 Figure 131: Global Autonomous Surgical Robotics Market (Others), $Billion, 2022-2033 Figure 132: Global Autonomous Surgical Robotics Market, (by Region), % Share, 2022 and 2033 Figure 133: North America Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 134: North America Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 135: North America Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 136: U.S. Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 137: U.S. Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 138: U.S. Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 139: Canada Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 140: Canada Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 141: Canada Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 142: Europe Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 143: Europe Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 144: Europe Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 145: Germany Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 146: Germany Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 147: Germany Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 148: U.K. Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 149: U.K. Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 150: U.K. Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 151: France Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 152: France Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 153: France Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 154: Italy Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 155: Italy Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 156: Italy Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 157: Spain Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 158: Spain Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 159: Spain Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 160: Asia-Pacific Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 161: Asia-Pacific Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 162: Asia-Pacific Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 163: Japan Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 164: Japan Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 165: Japan Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 166: China Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 167: China Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 168: China Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 169: India Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 170: India Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 171: India Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 172: Latin America Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 173: Latin America Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 174: Latin America Autonomous Surgical Robotics Market (Procedure Volume), Million, 2022-2033 Figure 175: Rest-of-the-World Autonomous Surgical Robotics Market, $Million, 2022-2033 Figure 176: Rest-of-the-World Autonomous Surgical Robotics Market (by Product Type), $Million, 2022-2033 Figure 177: Beijing Baihui Weikang Technology Co., Ltd.: Overall Product Portfolio Figure 178: Curexo, Inc.: Overall Product Portfolio Figure 179: Globus Medical, Inc.: Overall Product Portfolio Figure 180: Globus Medical, Inc.: Overall Financials, $Million, 2020-2022 Figure 181: Globus Medical, Inc.: Net Revenue (by Region), $Million, 2020-2022 Figure 182: Medtronic plc: Overall Product Portfolio Figure 183: Medtronic plc: Overall Financials, $Million, 2020-2022 Figure 184: Medtronic plc: Revenue (by Segment), $Million, 2020-2022 Figure 185: Medtronic plc: Revenue (by Region), $Million, 2020-2022 Figure 186: Medtronic plc: R&D Expenditure, $Million, 2020-2022 Figure 187: PROCEPT BioRobotics Corporation: Overall Product Portfolio Figure 188: PROCEPT BioRobotics Corporation: Overall Financials, $Million, 2020-2022 Figure 189: PROCEPT BioRobotics Corporation: Net Revenue (by Region), $Million, 2020-2022 Figure 190: PROCEPT BioRobotics Corporation: R&D Expenditure, $Million, 2020-2022 Figure 191: Renishaw plc: Overall Product Portfolio Figure 192: Renishaw plc: Overall Financials, $Million, 2020-2022 Figure 193: Renishaw plc: Revenue (by Segment), $Million, 2020-2022 Figure 194: Renishaw plc: Revenue (by Region), $Million, 2020-2022 Figure 195: Renishaw plc: R&D Expenditure, $Million, 2020-2022 Figure 196: Robocath, Inc.: Overall Product Portfolio Figure 197: Stryker Corporation: Overall Product Portfolio Figure 198: Stryker Corporation: Overall Financials, $Million, 2020-2022 Figure 199: Stryker Corporation: Revenue (by Segment), $Million, 2020-2022 Figure 200: Stryker Corporation: Revenue (by Region), $Million, 2020-2022 Figure 201: Stryker Corporation: R&D Expenditure, $Million, 2020-2022 Figure 202: Surgical Automations, Inc., Ltd.: Upcoming Product Portfolio Figure 203: Veebot Systems, Inc.: Upcoming Product Portfolio Figure 204: Venus Concept Inc: Overall Product Portfolio Figure 205: Venus Concept Inc.: Overall Financials, $Million, 2020-2022 Figure 206: Venus Concept Inc.: Revenue (by Segment), $Million, 2020-2022 Figure 207: Venus Concept Inc.: Revenue (by Region), $Million, 2020-2022 Figure 208: Venus Concept Inc.: R&D Expenditure, $Million, 2020-2022 Figure 209: Zimmer Biomet Holdings, Inc.: Product Portfolio Figure 210: Zimmer Biomet Holdings, Inc.: Overall Financials, $Million, 2020-2022 Figure 211: Zimmer Biomet Holdings, Inc.: Revenue (by Segment), $Million, 2020-2022 Figure 212: Zimmer Biomet Holdings, Inc.: Revenue (by Region), $Million, 2020-2022 Figure 213: Zimmer Biomet Holdings, Inc.: R&D Expenditure, $Million, 2020-2022 List of Tables Table 1: Global Autonomous Surgical Robotics Market: Impact Analysis Table 2: Key Questioned Answered in the Report Table 3: Global Autonomous Surgical Robotics Market: Product Overview Table 4: Cost Comparison, Robotic vs. Laparoscopic Inguinal Hernia Repair Table 5: Global Autonomous Surgical Robotics Market, Impact Analysis Table 6: Some of Examples of Autonomous Surgical Robots and Their Autonomous Features Table 7: Price of Different Autonomous Surgical Robotics Systems, $Million Table 8: North America Autonomous Surgical Robotics Market, Impact Analysis Table 9: Europe Autonomous Surgical Robotics Market, Impact Analysis Table 10: Asia-Pacific Autonomous Surgical Robotics Market, Impact Analysis Table 11: Rest-of-the-World Autonomous Surgical Robotics Market, Impact Analysis Table 12: Beijing Baihui Weikang Technology Co., Ltd.: Key Products and Features Table 13: Curexo, Inc.: Key Products and Features Table 14: Globus Medical, Inc.: Key Products and Features Table 15: PROCEPT BioRobotics Corporation: Key Products and Features Table 16: Renishaw plc: Key Products and Features Table 17: Robocath, Inc.: Key Products and Features Table 18: Stryker Corporation: Key Products and Features Table 19: Venus Concept Inc.: Key Products and Features Table 20: Zimmer Biomet Holdings, Inc.: Key Products and Features Press Release
The global autonomous surgical robotics market is estimated to reach $11.07 billion by 2033, reveals the premium market intelligence study by BIS Research. The study also highlights that the market is set to witness a CAGR of 17.45% during the forecast period 2023-2033.
The global market for autonomous surgical robotics is on a trajectory of substantial growth, driven by the increasing adoption of minimally invasive surgeries, technological advancements, and need for enhanced surgical capabilities. USP of the Report • Extensive product benchmarking of the top players (including established and emerging players) to offer a holistic view of the market product landscape • Market size and forecast based on detailed segmentation, including product type, application, and end users • Procedure volume of different application • Future glimpse of the autonomous surgical robotics market in different regions • Region and country-level analysis, including market size and forecast • Key opportunities of the market • Supply chain and pricing analysis for the market • Competitive landscape by product suppliers to original equipment manufacturers (OEMs) • Macro and micro industry indicators • Cost associated with autonomous surgical robotics procedures • Existing unmet needs and risk factors associated with autonomous surgical robotics procedures Analyst Perspective According to Akash Mhaskar, Principal Analyst, BIS Research, “The global autonomous surgical robotics market is on a trajectory of substantial growth, driven by the increasing adoption of minimally invasive surgeries, technological advancements, and need for enhanced surgical capabilities. Moreover, the use of artificial intelligence (AI) and haptics in surgical robotic platforms would give companies new opportunities to make work safer, increase productivity, and save valuable time for people.” Key Companies Operating in The Market Key players in the global autonomous surgical robotics market have been analyzed and profiled in the study, including manufacturers involved in new product launches, acquisitions, expansions, and strategic collaborations. Moreover, a detailed competitive benchmarking of the players operating in the global autonomous surgical robotics market has been done to help the reader understand how players stack against each other, presenting a clear market landscape. Additionally, comprehensive competitive strategies such as partnerships, agreements, and collaborations will aid the reader in understanding the untapped revenue pockets in the market. The key players profiled in the report include Beijing Baihui Weikang Technology Co., Ltd., Curexo, Inc., Globus Medical, Inc., Medtronic plc, PROCEPT BioRobotics Corporation, Renishaw plc, Robocath, Inc., Stryker Corporation, Surgical Automations, Inc., Veebot Systems, Inc., Venus Concept Inc., and Zimmer Biomet Holdings, Inc. Key Questions Answered in the Report • What are the major market drivers, challenges, and opportunities in the global autonomous surgical robotics market? • What are the sales and market strategies adopted by different players in the market? • What is the future potential of the market in different regions for different surgeries? • What are the key developmental strategies implemented by the key players to sustain in the competitive market? • What is the market segmentation based on product type? • What is the market segmentation based on application? • What is the growth potential of autonomous surgical robotics technology in each region, including North America, Europe, Asia-Pacific, Latin America, and Rest-of-the-World? • What is the market segmentation based on end user?
ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。本レポートと同分野(医療)の最新刊レポートBIS Research社のヘルスケア分野での最新刊レポート
本レポートと同じKEY WORD(surgical)の最新刊レポート
よくあるご質問BIS Research社はどのような調査会社ですか?多数のアナリストチームと大規模な業界専門家のネットワークを擁するBISリサーチは、市場に影響を与える革新的な技術に関して、高度なマーケットインテリジェンスを提供しています。特に、新興テクノロジーに関す... もっと見る 調査レポートの納品までの日数はどの程度ですか?在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
注文の手続きはどのようになっていますか?1)お客様からの御問い合わせをいただきます。
お支払方法の方法はどのようになっていますか?納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
データリソース社はどのような会社ですか?当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
|
詳細検索
2024/11/18 10:26 155.35 円 164.28 円 199.02 円 |