創薬AI市場(第2版):創薬ステップ別(ターゲット同定/バリデーション、ヒット創出/リード同定、リード最適化)、治療領域別(腫瘍疾患、中枢神経疾患、感染症疾患、呼吸器疾患、心血管疾患、内分泌疾患、消化器疾患、筋骨格系疾患、免疫疾患、皮膚疾患、その他)、主要地域別(北米、欧州、アジア太平洋地域、中南米、中東・アフリカ、その他の地域)の分布:産業動向と世界予測、2022-2035年AI in Drug Discovery Market (2nd Edition): Distribution by Drug Discovery Steps (Target Identification / Validation, Hit Generation / Lead Identification and Lead Optimization), Therapeutic Area (Oncological Disorders, CNS Disorders, Infectious Diseases, Respiratory Disorders, Cardiovascular Disorders, Endocrine Disorders, Gastrointestinal Disorders, Musculoskeletal Disorders, Immunological Disorders, Dermatological Disorders and Others) and Key Geographies (North America, Europe, Asia-Pacific, Latin America, MENA and Rest of the World): Industry Trends and Global Forecasts, 2022-2035 創薬AI市場は、2022年までに7億4,000万米ドルに達し、2022年から2035年の予測期間中に年平均成長率25%で成長すると予測されている。 新しい治療法の発見と開発には大きなハードルがあり、その主な原因は試行... もっと見る
サマリー創薬AI市場は、2022年までに7億4,000万米ドルに達し、2022年から2035年の予測期間中に年平均成長率25%で成長すると予測されている。新しい治療法の発見と開発には大きなハードルがあり、その主な原因は試行錯誤のプロセスである。これらの見込みの約90%は前進せず、かなりの財政負担につながると推定されている。医療用新薬の上市には通常10年から15年、10億ドルから20億ドルの費用がかかり、そのかなりの部分は探索段階だけに費やされる。こうした課題に取り組むため、製薬業界は創薬と開発に革命を起こす人工知能(AI)ツールに注目している。AI、特にディープラーニング・アルゴリズムは、膨大な臨床データや生物学的データを分析し、最新の創薬を導くことができる。これらのツールは、科学文献、電子カルテ、臨床試験データをふるいにかけ、標的同定、ヒット化合物創出、リード化合物最適化のための洞察を提供する。 現在、ディープラーニング、教師あり学習、教師なし学習、自然言語処理、機械学習などのAIを搭載したツールが、創薬のためにヘルスケアで広く活用されている。その目的は、開発の初期段階で安全性と有効性を予測することにより、研究開発の効率を高め、臨床での失敗を減らすことである。約210のAI創薬企業が関連サービスを提供しており、過去5年間で100億ドル以上がこの分野に投資された。注目すべきは、この投資の半分が過去2年間に行われたことで、関心が高まっていることを示している。さらに、創薬のためのAIベースのソリューションを推進するために、産学間で約440のパートナーシップが結ばれている。この領域における強力なイニシアチブは、この新興産業に従事するステークホルダーにとって、予測期間における市場拡大の可能性を示している。 レポート対象範囲 本レポートでは、創薬ステップ、治療分野、主要地域に焦点を当て、創薬AI市場を調査している。 推進要因、制約要因、機会、課題など、市場成長に影響を与える要因を分析しています。 市場内の潜在的な利益とハードルを評価し、主要業界プレイヤーの競争環境に関する洞察を提供します。 主要6地域にわたる市場セグメントの収益予測。 創薬サービス、プラットフォーム、ツールを専門とするAI中心企業を網羅的に分析。パラメータには、設立年、従業員数、本社所在地(北米、欧州、アジア太平洋地域、その他の地域)、分類(サービスプロバイダー、テクノロジープロバイダー、インハウスプレーヤー)などの企業詳細が含まれます。さらに、AI技術の種類、創薬フェーズ、薬剤分子の種類、対象とする治療分野も網羅している。 北米、欧州、アジア太平洋地域の主要AI創薬企業の詳細プロフィール。プロフィールは、設立年、従業員数、本社所在地、主要幹部、AIベースの創薬技術ポートフォリオ、最近の開発、将来の展望を網羅しています。 2009年から2022年までのAIを活用した創薬に関わるステークホルダー間のパートナーシップを調査し、様々な契約タイプ(研究開発、技術アクセス/利用、買収、ライセンス供与、合弁事業、合併、サービス契約)を網羅し、様々なパラメータに基づいてパートナーシップの動向を分析。 2006年から2022年にAI創薬企業に行われた投資(助成金、受賞、資金調達ラウンド、IPO、その後の株式公開)を詳細に分析。 2019年から2022年2月までに出願/付与された特許を、出願年、地域、CPCシンボル、新たな重点分野、出願人のタイプ、知的財産ポートフォリオに関する主要プレーヤーを考慮して評価。 新規参入企業の脅威、医薬品開発企業の交渉力、AIベースの創薬企業、代替技術、既存競合企業間のライバル関係など、創薬AI市場における競争力を定性的に評価。 独自の多変数依存評価モデルを用いた詳細な評価分析により、AI創薬業界プレーヤーの現在の純資産を推定。 製薬企業の研究開発費、創薬予算、様々な創薬ステップにおけるAI導入を考慮し、約15カ国の創薬におけるAI導入に伴う潜在的なコスト削減効果を推定した洞察に満ちた分析。 主要市場企業 Atomwise バイオシンタグマ コラボレーション・ファーマシューティカルズ Cyclica InveniAI リカージョン製薬 バロ・ヘルス 目次1. PREFACE1.1. Scope of the Report 1.2. Research Methodology 1.3. Key Questions Answered 1.4. Chapter Outlines 2. EXECUTIVE SUMMARY 3. INTRODUCTION 3.1. Chapter Overview 3.2. Artificial Intelligence 3.3. Subsets of AI 3.3.1. Machine Learning 3.3.1.1. Supervised Learning 3.3.1.2. Unsupervised Learning 3.3.1.3. Reinforced / Reinforcement Learning 3.3.1.4. Deep Learning 3.3.1.5. Natural Language Processing (NLP) 3.4. Data Science 3.5. Applications of AI in Healthcare 3.5.1. Drug Discovery 3.5.2. Disease Prediction, Diagnosis and Treatment 3.5.3. Manufacturing and Supply Chain Operations 3.5.4. Marketing 3.5.5. Clinical Trials 3.6. AI in Drug Discovery 3.6.1. Identification of Pathway and Target 3.6.2. Identification of Hit or Lead 3.6.3. Lead Optimization 3.6.4. Synthesis of Drug-Like Compounds 3.7. Advantages of Using AI in the Drug Discovery Process 3.8. Challenges Associated with the Adoption of AI 3.9. Concluding Remarks 4. COMPETITIVE LANDSCAPE 4.1. Chapter Overview 4.2. AI-based Drug Discovery: Overall Market Landscape 4.2.1. Analysis by Year of Establishment 4.2.2. Analysis by Company Size 4.2.3. Analysis by Location of Headquarters 4.2.4. Analysis by Type of Company 4.2.5. Analysis by Type of Technology 4.2.6. Analysis by Drug Discovery Steps 4.2.7. Analysis by Type of Drug Molecule 4.2.8. Analysis by Drug Development Initiatives 4.2.9. Analysis by Technology Licensing Option 4.2.10. Analysis by Target Therapeutic Area 4.2.11. Key Players: Analysis by Number of Platforms / Tools Available 5. COMPANY PROFILES: AI-BASED DRUG DISCOVERY PROVIDERS IN NORTH AMERICA 5.1. Chapter Overview 5.2. Atomwise 5.2.1. Company Overview 5.2.2. AI-based Drug Discovery Technology Portfolio 5.2.3. Recent Developments and Future Outlook 5.3. BioSyntagma 5.3.1. Company Overview 5.3.2. AI-based Drug Discovery Technology Portfolio 5.3.3. Recent Developments and Future Outlook 5.4. Collaborations Pharmaceuticals 5.4.1. Company Overview 5.4.2. AI-based Drug Discovery Technology Portfolio 5.4.3. Recent Developments and Future Outlook 5.5. Cyclica 5.5.1. Company Overview 5.5.2. AI-based Drug Discovery Technology Portfolio 5.5.3. Recent Developments and Future Outlook 5.6. InveniAI 5.6.1. Company Overview 5.6.2. AI-based Drug Discovery Technology Portfolio 5.6.3. Recent Developments and Future Outlook 5.7. Recursion Pharmaceuticals 5.7.1. Company Overview 5.7.2. AI-based Drug Discovery Technology Portfolio 5.7.3. Recent Developments and Future Outlook 5.8. Valo Health 5.8.1. Company Overview 5.8.2. AI-based Drug Discovery Technology Portfolio 5.8.3. Recent Developments and Future Outlook 6. COMPANY PROFILES: AI-BASED DRUG DISOCVERY SERVICE PROVIDERS IN EUROPE 6.1. Chapter Overview 6.2. Aiforia Technologies 6.2.1. Company Overview 6.2.2. AI-based Drug Discovery Technology Portfolio 6.2.3. Recent Developments and Future Outlook 6.3. Chemalive 6.3.1. Company Overview 6.3.2. AI-based Drug Discovery Technology Portfolio 6.3.3. Recent Developments and Future Outlook 6.4. DeepMatter 6.4.1. Company Overview 6.4.2. AI-based Drug Discovery Technology Portfolio 6.4.3. Recent Developments and Future Outlook 6.5. Exscientia 6.5.1. Company Overview 6.5.2. AI-based Drug Discovery Technology Portfolio 6.5.3. Recent Developments and Future Outlook 6.6. MAbSilico 6.6.1. Company Overview 6.6.2. AI-based Drug Discovery Technology Portfolio 6.6.3. Recent Developments and Future Outlook 6.7. Optibrium 6.7.1. Company Overview 6.7.2. AI-based Drug Discovery Technology Portfolio 6.7.3. Recent Developments and Future Outlook 6.8. Sensyne Health 6.8.1. Company Overview 6.8.2. AI-based Drug Discovery Technology Portfolio 6.8.3. Recent Developments and Future Outlook 7. COMPANY PROFILES: AI-BASED DRUG DISOCVERY SERVICE PROVIDERS IN ASIA PACIFIC 7.1. Chapter Overview 7.2. 3BIGS 7.2.1. Company Overview 7.2.2. AI-based Drug Discovery Technology Portfolio 7.2.3. Recent Developments and Future Outlook 7.3. Gero 7.3.1. Company Overview 7.3.2. AI-based Drug Discovery Technology Portfolio 7.3.3. Recent Developments and Future Outlook 7.4. Insilico Medicine 7.4.1. Company Overview 7.4.2. AI-based Drug Discovery Technology Portfolio 7.4.3. Recent Developments and Future Outlook 7.5. KeenEye 7.5.1. Company Overview 7.5.2. AI-based Drug Discovery Technology Portfolio 7.5.3. Recent Developments and Future Outlook 8. PARTNERSHIPS AND COLLABORATIONS 8.1. Chapter Overview 8.2. Partnership Models 8.3. AI-based Drug Discovery: Partnerships and Collaborations 8.3.1. Analysis by Year of Partnership 8.3.2. Analysis by Type of Partnership 8.3.3. Analysis by Year and Type of Partnership 8.3.4. Analysis by Target Therapeutic Area 8.3.5. Analysis by Focus Area 8.3.6. Analysis by Year of Partnership and Focus Area 8.3.7. Analysis by Type of Partner Company 8.3.8. Analysis by Type of Partnership and Type of Partner Company 8.3.9. Most Active Players: Analysis by Number of Partnerships 8.3.10. Analysis by Region 8.3.11.1. Intercontinental and Intracontinental Deals 8.3.11.2. International and Local Deals 9. FUNDING AND INVESTMENT ANALYSIS 9.1. Chapter Overview 9.2. Types of Funding 9.3. AI-based Drug Discovery: Funding and Investments 9.3.1. Analysis of Number of Funding Instances by Year 9.3.2. Analysis of Amount Invested by Year 9.3.3. Analysis by Type of Funding 9.3.4. Analysis of Amount Invested and Type of Funding 9.3.5. Analysis of Amount Invested by Company Size 9.3.6. Analysis by Type of Investor 9.3.7. Analysis of Amount Invested by Type of Investor 9.3.8. Most Active Players: Analysis by Number of Funding Instances 9.3.9. Most Active Players: Analysis by Amount Invested 9.3.10. Most Active Investors: Analysis by Number of Funding Instances 9.3.11. Analysis of Amount Invested by Geography 9.3.11.1. Analysis by Region 9.3.11.2. Analysis by Country 10. PATENT ANALYSIS 10.1. Chapter Overview 10.2. Scope and Methodology 10.3. AI-based Drug Discovery: Patent Analysis 10.3.1 Analysis by Application Year 10.3.2. Analysis by Geography 10.3.3. Analysis by CPC Symbols 10.3.4. Analysis by Emerging Focus Areas 10.3.5. Analysis by Type of Applicant 10.3.6. Leading Players: Analysis by Number of Patents 10.4. AI-based Drug Discovery: Patent Benchmarking 10.4.1. Analysis by Patent Characteristics 10.5. AI-based Drug Discovery: Patent Valuation 10.6. Leading Patents: Analysis by Number of Citations 11. PORTER’S FIVE FORCES ANALYSIS 11.1. Chapter Overview 11.2. Methodology and Assumptions 11.3. Key Parameters 11.3.1. Threats of New Entrants 11.3.2. Bargaining Power of Drug Developers 11.3.3. Bargaining Power of Companies Using AI for Drug Discovery 11.3.4. Threats of Substitute Technologies 11.3.5. Rivalry Among Existing Competitors 11.4. Concluding Remarks 12. COMPANY VALUATION ANALYSIS 12.1. Chapter Overview 12.2. Company Valuation Analysis: Key Parameters 12.3. Methodology 12.4. Company Valuation Analysis: Roots Analysis Proprietary Scores 13. AI-BASED HEALTHCARE INITIATIVES OF TECHNOLOGY GIANTS 13.1 Chapter Overview 13.1.1. Amazon Web Services 13.1.2. Microsoft 13.1.3. Intel 13.1.4. Alibaba Cloud 13.1.5. Siemens 13.1.6. Google 13.1.7. IBM 14. COST SAVING ANALYSIS 14.1. Chapter Overview 14.2. Key Assumptions and Methodology 14.3. Overall Cost Saving Potential Associated with Use of AI-based Solutions in Drug Discovery, 2022-2035 14.3.1. Likely Cost Savings: Analysis by Drug Discovery Steps, 2022-2035 14.3.1.1. Likely Cost Savings During Target Identification / Validation, 2022-2035 14.3.1.2. Likely Cost Savings During Hit Generation / Lead Identification, 2022-2035 14.3.1.3. Likely Cost Savings During Lead Optimization, 2022-2035 14.3.2. Likely Cost Savings: Analysis by Target Therapeutic Area, 2022-2035 14.3.2.1. Likely Cost Savings for Drugs Targeting Oncological Disorders, 2022-2035 14.3.2.2. Likely Cost Savings for Drugs Targeting Neurological Disorders, 2022-2035 14.3.2.3. Likely Cost Savings for Drugs Targeting Infectious Diseases, 2022-2035 14.3.2.4. Likely Cost Savings for Drugs Targeting Respiratory Disorders, 2022-2035 14.3.2.5. Likely Cost Savings for Drugs Targeting Cardiovascular Disorders, 2022-2035 14.3.2.6. Likely Cost Savings for Drugs Targeting Endocrine Disorders, 2022-2035 14.3.2.7. Likely Cost Savings for Drugs Targeting Gastrointestinal Disorders, 2022-2035 14.3.2.8. Likely Cost Savings for Drugs Targeting Musculoskeletal Disorders, 2022-2035 14.3.2.9. Likely Cost Savings for Drugs Targeting Immunological Disorders, 2022-2035 14.3.2.10. Likely Cost Savings for Drugs Targeting Dermatological Disorders, 2022-2035 14.3.2.11. Likely Cost Savings for Drugs Targeting Other Disorders, 2022-2035 14.3.3. Likely Cost Savings: Analysis by Geography, 2022-2035 14.3.3.1. Likely Cost Savings in North America, 2022-2035 14.3.3.2. Likely Cost Savings in Europe, 2022-2035 14.3.3.3. Likely Cost Savings in Asia Pacific, 2022-2035 14.3.3.4. Likely Cost Savings in MENA, 2022-2035 14.3.3.5. Likely Cost Savings in Latin America, 2022-2035 14.3.3.6. Likely Cost Savings in Rest of the World, 2022-2035 15. MARKET FORECAST 15.1. Chapter Overview 15.2. Key Assumptions and Methodology 15.3. Global AI-based Drug Discovery Market, 2022-2035 15.3.1. AI-based Drug Discovery Market: Distribution by Drug Discovery Steps, 2022-2035 15.3.1.1. AI-based Drug Discovery Market for Target Identification / Validation, 2022-2035 15.3.1.2. AI-based Drug Discovery Market for Hit Generation / Lead Identification, 2022-2035 15.3.1.3. AI-based Drug Discovery Market for Lead Optimization, 2022-2035 15.3.2. AI-based Drug Discovery Market: Distribution by Target Therapeutic Area, 2022-2035 15.3.2.1. AI-based Drug Discovery Market for Oncological Disorders, 2022-2035 15.3.2.2. AI-based Drug Discovery Market for Neurological Disorders, 2022-2035 15.3.2.3. AI-based Drug Discovery Market for Infectious Diseases, 2022-2035 15.3.2.4. AI-based Drug Discovery Market for Respiratory Disorders, 2022-2035 15.3.2.5. AI-based Drug Discovery Market for Cardiovascular Disorders, 2022-2035 15.3.2.6. AI-based Drug Discovery Market for Endocrine Disorders, 2022-2035 15.3.2.7. AI-based Drug Discovery Market for Gastrointestinal Disorders, 2022-2035 15.3.2.8. AI-based Drug Discovery Market for Musculoskeletal Disorders, 2022-2035 15.3.2.9. AI-based Drug Discovery Market for Immunological Disorders, 2022-2035 15.3.2.10. AI-based Drug Discovery Market for Dermatological Disorders, 2022-2035 15.3.2.11. AI-based Drug Discovery Market for Other Disorders, 2022-2035 15.3.3. AI-based Drug Discovery Market: Distribution by Geography, 2022-2035 15.3.3.1. AI-based Drug Discovery Market in North America, 2022-2035 15.3.3.1.1. AI-based Drug Discovery Market in the US, 2022-2035 15.3.3.1.2. AI-based Drug Discovery Market in Canada, 2022-2035 15.3.3.2. AI-based Drug Discovery Market in Europe, 2022-2035 15.3.3.2.1. AI-based Drug Discovery Market in the UK, 2022-2035 15.3.3.2.2. AI-based Drug Discovery Market in France, 2022-2035 15.3.3.2.3. AI-based Drug Discovery Market in Germany, 2022-2035 15.3.3.2.4. AI-based Drug Discovery Market in Spain, 2022-2035 15.3.3.2.5. AI-based Drug Discovery Market in Italy, 2022-2035 15.3.3.2.6. AI-based Drug Discovery Market in Rest of Europe, 2022-2035 15.3.3.3. AI-based Drug Discovery Market in Asia Pacific, 2020-2035 15.3.3.3.1. AI-based Drug Discovery Market in China, 2022-2035 15.3.3.3.2. AI-based Drug Discovery Market in India, 2022-2035 15.3.3.3.3. AI-based Drug Discovery Market in Japan, 2022-2035 15.3.3.3.4. AI-based Drug Discovery Market in Australia, 2022-2035 15.3.3.3.5. AI-based Drug Discovery Market in South Korea, 2022-2035 15.3.3.4. AI-based Drug Discovery Market in MENA, 2022-2035 15.3.3.4.1. AI-based Drug Discovery Market in Saudi Arabia, 2022-2035 15.3.3.4.2. AI-based Drug Discovery Market in UAE, 2022-2035 15.3.3.4.3. AI-based Drug Discovery Market in Iran, 2022-2035 15.3.3.5. AI-based Drug Discovery Market in Latin America, 2022-2035 15.3.3.5.1. AI-based Drug Discovery Market in Argentina, 2022-2035 15.3.3.6. AI-based Drug Discovery Market in Rest of the World, 2022-2035 16. CONCLUSION 17. EXECUTIVE INSIGHTS 17.1. Chapter Overview 17.2. Aigenpulse 17.2.1. Company Snapshot 17.2.2. Interview Transcript: Steve Yemm (Chief Commercial Officer) and Satnam Surae (Chief Product Officer) 17.3. Cloud Pharmaceuticals 17.3.1. Company Snapshot 17.3.2. Interview Transcript: Ed Addison (Co-founder, Chairman and Chief Executive Officer) 17.4. DEARGEN 17.4.1. Company Snapshot 17.4.2. Interview Transcript: Bo Ram Beck (Head Researcher) 17.5. Intelligent Omics 17.5.1. Company Snapshot 17.5.2. Interview Transcript: Simon Haworth (Chief Executive Officer) 17.6. Pepticom 17.6.1. Company Snapshot 17.6.2. Interview Transcript: Immanuel Lerner (Chief Executive Officer, Co-Founder) 17.7. Sage-N Research 17.7.1. Company Snapshot 17.7.2. Interview Transcript: David Chiang (Chairman) 18. APPENDIX I: TABULATED DATA 19. APPENDIX II: LIST OF COMPANIES AND ORGANIZATIONS
SummaryThe AI in drug discovery market is expected to reach USD 0.74 billion by 2022 anticipated to grow at a CAGR of 25% during the forecast period 2022-2035. Table of Contents1. PREFACE1.1. Scope of the Report 1.2. Research Methodology 1.3. Key Questions Answered 1.4. Chapter Outlines 2. EXECUTIVE SUMMARY 3. INTRODUCTION 3.1. Chapter Overview 3.2. Artificial Intelligence 3.3. Subsets of AI 3.3.1. Machine Learning 3.3.1.1. Supervised Learning 3.3.1.2. Unsupervised Learning 3.3.1.3. Reinforced / Reinforcement Learning 3.3.1.4. Deep Learning 3.3.1.5. Natural Language Processing (NLP) 3.4. Data Science 3.5. Applications of AI in Healthcare 3.5.1. Drug Discovery 3.5.2. Disease Prediction, Diagnosis and Treatment 3.5.3. Manufacturing and Supply Chain Operations 3.5.4. Marketing 3.5.5. Clinical Trials 3.6. AI in Drug Discovery 3.6.1. Identification of Pathway and Target 3.6.2. Identification of Hit or Lead 3.6.3. Lead Optimization 3.6.4. Synthesis of Drug-Like Compounds 3.7. Advantages of Using AI in the Drug Discovery Process 3.8. Challenges Associated with the Adoption of AI 3.9. Concluding Remarks 4. COMPETITIVE LANDSCAPE 4.1. Chapter Overview 4.2. AI-based Drug Discovery: Overall Market Landscape 4.2.1. Analysis by Year of Establishment 4.2.2. Analysis by Company Size 4.2.3. Analysis by Location of Headquarters 4.2.4. Analysis by Type of Company 4.2.5. Analysis by Type of Technology 4.2.6. Analysis by Drug Discovery Steps 4.2.7. Analysis by Type of Drug Molecule 4.2.8. Analysis by Drug Development Initiatives 4.2.9. Analysis by Technology Licensing Option 4.2.10. Analysis by Target Therapeutic Area 4.2.11. Key Players: Analysis by Number of Platforms / Tools Available 5. COMPANY PROFILES: AI-BASED DRUG DISCOVERY PROVIDERS IN NORTH AMERICA 5.1. Chapter Overview 5.2. Atomwise 5.2.1. Company Overview 5.2.2. AI-based Drug Discovery Technology Portfolio 5.2.3. Recent Developments and Future Outlook 5.3. BioSyntagma 5.3.1. Company Overview 5.3.2. AI-based Drug Discovery Technology Portfolio 5.3.3. Recent Developments and Future Outlook 5.4. Collaborations Pharmaceuticals 5.4.1. Company Overview 5.4.2. AI-based Drug Discovery Technology Portfolio 5.4.3. Recent Developments and Future Outlook 5.5. Cyclica 5.5.1. Company Overview 5.5.2. AI-based Drug Discovery Technology Portfolio 5.5.3. Recent Developments and Future Outlook 5.6. InveniAI 5.6.1. Company Overview 5.6.2. AI-based Drug Discovery Technology Portfolio 5.6.3. Recent Developments and Future Outlook 5.7. Recursion Pharmaceuticals 5.7.1. Company Overview 5.7.2. AI-based Drug Discovery Technology Portfolio 5.7.3. Recent Developments and Future Outlook 5.8. Valo Health 5.8.1. Company Overview 5.8.2. AI-based Drug Discovery Technology Portfolio 5.8.3. Recent Developments and Future Outlook 6. COMPANY PROFILES: AI-BASED DRUG DISOCVERY SERVICE PROVIDERS IN EUROPE 6.1. Chapter Overview 6.2. Aiforia Technologies 6.2.1. Company Overview 6.2.2. AI-based Drug Discovery Technology Portfolio 6.2.3. Recent Developments and Future Outlook 6.3. Chemalive 6.3.1. Company Overview 6.3.2. AI-based Drug Discovery Technology Portfolio 6.3.3. Recent Developments and Future Outlook 6.4. DeepMatter 6.4.1. Company Overview 6.4.2. AI-based Drug Discovery Technology Portfolio 6.4.3. Recent Developments and Future Outlook 6.5. Exscientia 6.5.1. Company Overview 6.5.2. AI-based Drug Discovery Technology Portfolio 6.5.3. Recent Developments and Future Outlook 6.6. MAbSilico 6.6.1. Company Overview 6.6.2. AI-based Drug Discovery Technology Portfolio 6.6.3. Recent Developments and Future Outlook 6.7. Optibrium 6.7.1. Company Overview 6.7.2. AI-based Drug Discovery Technology Portfolio 6.7.3. Recent Developments and Future Outlook 6.8. Sensyne Health 6.8.1. Company Overview 6.8.2. AI-based Drug Discovery Technology Portfolio 6.8.3. Recent Developments and Future Outlook 7. COMPANY PROFILES: AI-BASED DRUG DISOCVERY SERVICE PROVIDERS IN ASIA PACIFIC 7.1. Chapter Overview 7.2. 3BIGS 7.2.1. Company Overview 7.2.2. AI-based Drug Discovery Technology Portfolio 7.2.3. Recent Developments and Future Outlook 7.3. Gero 7.3.1. Company Overview 7.3.2. AI-based Drug Discovery Technology Portfolio 7.3.3. Recent Developments and Future Outlook 7.4. Insilico Medicine 7.4.1. Company Overview 7.4.2. AI-based Drug Discovery Technology Portfolio 7.4.3. Recent Developments and Future Outlook 7.5. KeenEye 7.5.1. Company Overview 7.5.2. AI-based Drug Discovery Technology Portfolio 7.5.3. Recent Developments and Future Outlook 8. PARTNERSHIPS AND COLLABORATIONS 8.1. Chapter Overview 8.2. Partnership Models 8.3. AI-based Drug Discovery: Partnerships and Collaborations 8.3.1. Analysis by Year of Partnership 8.3.2. Analysis by Type of Partnership 8.3.3. Analysis by Year and Type of Partnership 8.3.4. Analysis by Target Therapeutic Area 8.3.5. Analysis by Focus Area 8.3.6. Analysis by Year of Partnership and Focus Area 8.3.7. Analysis by Type of Partner Company 8.3.8. Analysis by Type of Partnership and Type of Partner Company 8.3.9. Most Active Players: Analysis by Number of Partnerships 8.3.10. Analysis by Region 8.3.11.1. Intercontinental and Intracontinental Deals 8.3.11.2. International and Local Deals 9. FUNDING AND INVESTMENT ANALYSIS 9.1. Chapter Overview 9.2. Types of Funding 9.3. AI-based Drug Discovery: Funding and Investments 9.3.1. Analysis of Number of Funding Instances by Year 9.3.2. Analysis of Amount Invested by Year 9.3.3. Analysis by Type of Funding 9.3.4. Analysis of Amount Invested and Type of Funding 9.3.5. Analysis of Amount Invested by Company Size 9.3.6. Analysis by Type of Investor 9.3.7. Analysis of Amount Invested by Type of Investor 9.3.8. Most Active Players: Analysis by Number of Funding Instances 9.3.9. Most Active Players: Analysis by Amount Invested 9.3.10. Most Active Investors: Analysis by Number of Funding Instances 9.3.11. Analysis of Amount Invested by Geography 9.3.11.1. Analysis by Region 9.3.11.2. Analysis by Country 10. PATENT ANALYSIS 10.1. Chapter Overview 10.2. Scope and Methodology 10.3. AI-based Drug Discovery: Patent Analysis 10.3.1 Analysis by Application Year 10.3.2. Analysis by Geography 10.3.3. Analysis by CPC Symbols 10.3.4. Analysis by Emerging Focus Areas 10.3.5. Analysis by Type of Applicant 10.3.6. Leading Players: Analysis by Number of Patents 10.4. AI-based Drug Discovery: Patent Benchmarking 10.4.1. Analysis by Patent Characteristics 10.5. AI-based Drug Discovery: Patent Valuation 10.6. Leading Patents: Analysis by Number of Citations 11. PORTER’S FIVE FORCES ANALYSIS 11.1. Chapter Overview 11.2. Methodology and Assumptions 11.3. Key Parameters 11.3.1. Threats of New Entrants 11.3.2. Bargaining Power of Drug Developers 11.3.3. Bargaining Power of Companies Using AI for Drug Discovery 11.3.4. Threats of Substitute Technologies 11.3.5. Rivalry Among Existing Competitors 11.4. Concluding Remarks 12. COMPANY VALUATION ANALYSIS 12.1. Chapter Overview 12.2. Company Valuation Analysis: Key Parameters 12.3. Methodology 12.4. Company Valuation Analysis: Roots Analysis Proprietary Scores 13. AI-BASED HEALTHCARE INITIATIVES OF TECHNOLOGY GIANTS 13.1 Chapter Overview 13.1.1. Amazon Web Services 13.1.2. Microsoft 13.1.3. Intel 13.1.4. Alibaba Cloud 13.1.5. Siemens 13.1.6. Google 13.1.7. IBM 14. COST SAVING ANALYSIS 14.1. Chapter Overview 14.2. Key Assumptions and Methodology 14.3. Overall Cost Saving Potential Associated with Use of AI-based Solutions in Drug Discovery, 2022-2035 14.3.1. Likely Cost Savings: Analysis by Drug Discovery Steps, 2022-2035 14.3.1.1. Likely Cost Savings During Target Identification / Validation, 2022-2035 14.3.1.2. Likely Cost Savings During Hit Generation / Lead Identification, 2022-2035 14.3.1.3. Likely Cost Savings During Lead Optimization, 2022-2035 14.3.2. Likely Cost Savings: Analysis by Target Therapeutic Area, 2022-2035 14.3.2.1. Likely Cost Savings for Drugs Targeting Oncological Disorders, 2022-2035 14.3.2.2. Likely Cost Savings for Drugs Targeting Neurological Disorders, 2022-2035 14.3.2.3. Likely Cost Savings for Drugs Targeting Infectious Diseases, 2022-2035 14.3.2.4. Likely Cost Savings for Drugs Targeting Respiratory Disorders, 2022-2035 14.3.2.5. Likely Cost Savings for Drugs Targeting Cardiovascular Disorders, 2022-2035 14.3.2.6. Likely Cost Savings for Drugs Targeting Endocrine Disorders, 2022-2035 14.3.2.7. Likely Cost Savings for Drugs Targeting Gastrointestinal Disorders, 2022-2035 14.3.2.8. Likely Cost Savings for Drugs Targeting Musculoskeletal Disorders, 2022-2035 14.3.2.9. Likely Cost Savings for Drugs Targeting Immunological Disorders, 2022-2035 14.3.2.10. Likely Cost Savings for Drugs Targeting Dermatological Disorders, 2022-2035 14.3.2.11. Likely Cost Savings for Drugs Targeting Other Disorders, 2022-2035 14.3.3. Likely Cost Savings: Analysis by Geography, 2022-2035 14.3.3.1. Likely Cost Savings in North America, 2022-2035 14.3.3.2. Likely Cost Savings in Europe, 2022-2035 14.3.3.3. Likely Cost Savings in Asia Pacific, 2022-2035 14.3.3.4. Likely Cost Savings in MENA, 2022-2035 14.3.3.5. Likely Cost Savings in Latin America, 2022-2035 14.3.3.6. Likely Cost Savings in Rest of the World, 2022-2035 15. MARKET FORECAST 15.1. Chapter Overview 15.2. Key Assumptions and Methodology 15.3. Global AI-based Drug Discovery Market, 2022-2035 15.3.1. AI-based Drug Discovery Market: Distribution by Drug Discovery Steps, 2022-2035 15.3.1.1. AI-based Drug Discovery Market for Target Identification / Validation, 2022-2035 15.3.1.2. AI-based Drug Discovery Market for Hit Generation / Lead Identification, 2022-2035 15.3.1.3. AI-based Drug Discovery Market for Lead Optimization, 2022-2035 15.3.2. AI-based Drug Discovery Market: Distribution by Target Therapeutic Area, 2022-2035 15.3.2.1. AI-based Drug Discovery Market for Oncological Disorders, 2022-2035 15.3.2.2. AI-based Drug Discovery Market for Neurological Disorders, 2022-2035 15.3.2.3. AI-based Drug Discovery Market for Infectious Diseases, 2022-2035 15.3.2.4. AI-based Drug Discovery Market for Respiratory Disorders, 2022-2035 15.3.2.5. AI-based Drug Discovery Market for Cardiovascular Disorders, 2022-2035 15.3.2.6. AI-based Drug Discovery Market for Endocrine Disorders, 2022-2035 15.3.2.7. AI-based Drug Discovery Market for Gastrointestinal Disorders, 2022-2035 15.3.2.8. AI-based Drug Discovery Market for Musculoskeletal Disorders, 2022-2035 15.3.2.9. AI-based Drug Discovery Market for Immunological Disorders, 2022-2035 15.3.2.10. AI-based Drug Discovery Market for Dermatological Disorders, 2022-2035 15.3.2.11. AI-based Drug Discovery Market for Other Disorders, 2022-2035 15.3.3. AI-based Drug Discovery Market: Distribution by Geography, 2022-2035 15.3.3.1. AI-based Drug Discovery Market in North America, 2022-2035 15.3.3.1.1. AI-based Drug Discovery Market in the US, 2022-2035 15.3.3.1.2. AI-based Drug Discovery Market in Canada, 2022-2035 15.3.3.2. AI-based Drug Discovery Market in Europe, 2022-2035 15.3.3.2.1. AI-based Drug Discovery Market in the UK, 2022-2035 15.3.3.2.2. AI-based Drug Discovery Market in France, 2022-2035 15.3.3.2.3. AI-based Drug Discovery Market in Germany, 2022-2035 15.3.3.2.4. AI-based Drug Discovery Market in Spain, 2022-2035 15.3.3.2.5. AI-based Drug Discovery Market in Italy, 2022-2035 15.3.3.2.6. AI-based Drug Discovery Market in Rest of Europe, 2022-2035 15.3.3.3. AI-based Drug Discovery Market in Asia Pacific, 2020-2035 15.3.3.3.1. AI-based Drug Discovery Market in China, 2022-2035 15.3.3.3.2. AI-based Drug Discovery Market in India, 2022-2035 15.3.3.3.3. AI-based Drug Discovery Market in Japan, 2022-2035 15.3.3.3.4. AI-based Drug Discovery Market in Australia, 2022-2035 15.3.3.3.5. AI-based Drug Discovery Market in South Korea, 2022-2035 15.3.3.4. AI-based Drug Discovery Market in MENA, 2022-2035 15.3.3.4.1. AI-based Drug Discovery Market in Saudi Arabia, 2022-2035 15.3.3.4.2. AI-based Drug Discovery Market in UAE, 2022-2035 15.3.3.4.3. AI-based Drug Discovery Market in Iran, 2022-2035 15.3.3.5. AI-based Drug Discovery Market in Latin America, 2022-2035 15.3.3.5.1. AI-based Drug Discovery Market in Argentina, 2022-2035 15.3.3.6. AI-based Drug Discovery Market in Rest of the World, 2022-2035 16. CONCLUSION 17. EXECUTIVE INSIGHTS 17.1. Chapter Overview 17.2. Aigenpulse 17.2.1. Company Snapshot 17.2.2. Interview Transcript: Steve Yemm (Chief Commercial Officer) and Satnam Surae (Chief Product Officer) 17.3. Cloud Pharmaceuticals 17.3.1. Company Snapshot 17.3.2. Interview Transcript: Ed Addison (Co-founder, Chairman and Chief Executive Officer) 17.4. DEARGEN 17.4.1. Company Snapshot 17.4.2. Interview Transcript: Bo Ram Beck (Head Researcher) 17.5. Intelligent Omics 17.5.1. Company Snapshot 17.5.2. Interview Transcript: Simon Haworth (Chief Executive Officer) 17.6. Pepticom 17.6.1. Company Snapshot 17.6.2. Interview Transcript: Immanuel Lerner (Chief Executive Officer, Co-Founder) 17.7. Sage-N Research 17.7.1. Company Snapshot 17.7.2. Interview Transcript: David Chiang (Chairman) 18. APPENDIX I: TABULATED DATA 19. APPENDIX II: LIST OF COMPANIES AND ORGANIZATIONS
ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。本レポートと同分野の最新刊レポート
Roots Analysis 社の最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
よくあるご質問Roots Analysis社はどのような調査会社ですか?Roots Analysisは2013年設立の医薬品・医療機器が専門の調査会社です。 医薬品の製造委託や創薬のデジタル化など、最新の医薬業界の分析を行っています。 もっと見る 調査レポートの納品までの日数はどの程度ですか?在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
注文の手続きはどのようになっていますか?1)お客様からの御問い合わせをいただきます。
お支払方法の方法はどのようになっていますか?納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
データリソース社はどのような会社ですか?当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
|
詳細検索
2024/11/12 10:26 154.83 円 165.45 円 201.96 円 |