臨床試験におけるAI市場(第2版):AIソフトウェアおよびサービスプロバイダー、臨床試験フェーズ別(フェーズI、フェーズII、フェーズIII)、対象治療領域別(心血管疾患、中枢神経系疾患、感染症疾患、代謝性疾患、腫瘍疾患、その他の疾患)、エンドユーザー別(製薬企業およびバイオテクノロジー企業、その他のエンドユーザー)、主要地域別(北米、欧州、アジア太平洋地域、中南米、中東・北アフリカ)の分布:産業動向と世界予測、2023-2035年AI in Clinical Trials Market (2nd Edition): AI Software and Service Providers, Distribution by Trial Phase (Phase I, Phase II and Phase III), Target Therapeutic Area (Cardiovascular Disorders, CNS Disorders, Infectious Diseases, Metabolic Disorders, Oncological Disorders and Other Disorders), End-user (Pharmaceutical and Biotechnology Companies, and Other End-users) and Key Geographical Regions (North America, Europe, Asia-Pacific, Latin America, and Middle East and North Africa ): Industry Trends and Global Forecasts, 2023-2035 臨床試験におけるAI市場は、2035年までに85億米ドルに達すると予測され、予測期間2023-2035年のCAGRは16%で成長すると予測されている。 新規の治療介入の創出には多大な資源が必要であり、多面的で資源集約的... もっと見る
サマリー臨床試験におけるAI市場は、2035年までに85億米ドルに達すると予測され、予測期間2023-2035年のCAGRは16%で成長すると予測されている。新規の治療介入の創出には多大な資源が必要であり、多面的で資源集約的なプロセスを伴う。概念化から市場投入までの道のりには、時間と資金の両面で多大な投資が必要であり、多くの場合10年前後と見積もられ、1つの医薬品に25億ドルを超える投資が必要とされる。この複雑なプロセスにおける極めて重要な段階が臨床試験の段階であり、医薬品開発に費やされる時間と資金の半分近くを消費する。残念なことに、スポンサーは、臨床試験がうまくいかず、医薬品の上市に財政的な制約や大幅な遅れが生じることがしばしばある。ここ数十年、医薬品候補が臨床試験から承認取得に至る成功率は、10%から20%という低い水準で推移している。この持続的な課題は、臨床段階での介入を失敗させる様々な要因に起因しており、これには最適とは言えない試験デザイン、不十分な患者募集、不十分な被験者層別化、臨床試験参加者の高い離脱率などが含まれる。 これらの課題を克服し、臨床試験プロセスを最適化するために、製薬業界の関係者は革新的な解決策や戦略を積極的に模索している。注目すべき戦略の一つは、医薬品開発に人工知能(AI)を取り入れることであり、特に臨床試験において従来の手法に革命をもたらす可能性がある。注目すべきは、AIが膨大なデータセットを統合・分析する能力を持ち、治験依頼者に将来の研究努力を最適化する力を与えることである。臨床試験のデザイン、患者の募集と維持、実施施設の選択、データの解釈、治療評価に関する問題に対処することで、AIは臨床医薬品開発プロセス全体を強化し、洗練させることが期待できる。さらに、投資状況は、ヘルスケア分野、特に臨床試験の領域でAIへの関心が高まっていることを裏付けている。2021年には、ヘルスケアに特化したAI企業への投資額が200億ドルを超え、2020年の約150億ドルを上回る大幅な急増が見られた。このような投資家の関心の高まりは、予測期間中に臨床試験AI市場が堅調に成長する可能性を示唆している。 レポート対象範囲 本レポートでは、臨床試験におけるAI市場を調査し、試験フェーズ、対象治療領域、エンドユーザー、主要地域に基づいて分析しています。 当市場の成長に影響を与える要因(促進要因、阻害要因、機会、課題など)を評価するための分析を行っています。 市場内の潜在的な利点と障害について評価を行い、主要市場プレイヤーの競争環境についての洞察を提供する。 主要5地域に関する市場セグメントの収益予測を掲載しています。 臨床試験におけるAI市場の現状と潜在的な進化に関する洞察を提供するエグゼクティブサマリーが含まれています。この概要では、AI、そのサブ分野、ヘルスケアと臨床試験におけるアプリケーション、採用の課題、将来の展望について掘り下げています。 臨床試験向けのAIソフトウェアとサービスを提供する企業について、設立年、企業規模、本社所在地、主要提供製品(デバイス、技術/プラットフォーム、サービス)、ビジネスモデル、展開オプション、使用AI技術、応用分野、潜在的エンドユーザーなどのパラメータを考慮した評価を実施。 特定の条件を満たす企業を選別し、詳細なプロフィールを作成。各プロフィールには、企業概要(設立年、従業員数、本社所在地、リーダーシップチーム)、財務情報(入手可能な場合)、AIベースの臨床試験オファリング、最近の動向、将来の展望が含まれています。 治験登録年、患者登録数、フェーズ、スポンサータイプ、人口統計、治療領域、割り付けモデル、マスキング、介入、目的、アクティブプレーヤー、地理的位置などのパラメータを考慮した、完了済み/進行中のAIベースの臨床試験に関する洞察に満ちた分析が提示されている。 臨床試験におけるAI市場で2018年以降に形成されたパートナーシップについて、利用契約、統合、ライセンス供与、研究開発協力、合併、買収、サービス契約、提携、およびその他の関連する協力関係を包含して検証を行う。 臨床試験向けのAIソフトウェアやサービスに焦点を当てた新興企業や中堅企業への様々な発展段階における投資(シードファイナンス、VCによる資金調達、IPO、助成金、デットファイナンス、エクイティ)について詳細な分析を行っています。 主な製薬企業による臨床試験におけるAIへの取り組みについて、取り組み年、タイプ、応用分野、治療フォーカス、AIに焦点を当てた取り組みに関わる主要企業などのパラメータを考慮した分析を提供する。 先進的なツール(ブロックチェーン、ビッグデータ分析、リアルワールドエビデンス、デジタルツイン、クラウドコンピューティング、IoT)の臨床試験のさまざまな段階での実装を描いたフレームワークを提示し、文献の傾向や特許に基づいて実装の容易さと関連するリスクを分析する。 2035年までの臨床試験におけるAIによる潜在的なコスト削減を予測する詳細なコスト削減分析が示され、さまざまな段階や手順(募集、維持、人員配置、管理、モニタリング、データ検証)における削減が、公式化された数値と予測で強調されている。 主要市場企業 AiCure アンチドート・テクノロジーズ ディープ6 AI イノプレクサス IQVIA メディアンテクノロジーズ メディデータ Mendel.ai Phesi サーマ・テクノロジーズ シグナントヘルス Trials.ai 目次1. PREFACE1.1. AI in Clinical Trials Overview 1.2. Key Market Insights 1.3. Scope of the Report 1.4. Research Methodology 1.5. Frequently Asked Questions 1.6. Chapter Outlines 2. EXECUTIVE SUMMARY 3. INTRODUCTION 3.1. Chapter Overview 3.2. Evolution of AI 3.3. Subfields of AI 3.4. Applications of AI in Healthcare 3.4.1. Drug Discovery 3.4.2. Drug Manufacturing 3.4.3. Marketing 3.4.4. Diagnosis and Treatment 3.4.5. Clinical Trials 3.5. Applications of AI in Clinical Trials 3.6. Challenges Associated with the Adoption of AI 3.7. Future Perspective 4. MARKET LANDSCAPE 4.1. Chapter Overview 4.2. AI in Clinical Trials: AI Software and Service Providers Landscape 4.2.1. Analysis by Year of Establishment 4.2.2. Analysis by Company Size 4.2.3. Analysis by Location of Headquarters 4.2.4. Analysis by Company Size and Location of Headquarters (Region-wise) 4.2.5. Analysis by Key Offering(s) 4.2.6. Analysis by Business Model(s) 4.2.7. Analysis by Deployment Option(s) 4.2.8. Analysis by Type of AI Technology 4.2.9. Analysis by Application Area(s) 4.2.10. Analysis by Potential End-user(s) 5. COMPANY PROFILES 5.1. Chapter Overview 5.2. AiCure 5.2.1. Company Overview 5.2.2. AI-based Clinical Trial Offerings 5.2.3. Recent Developments and Future Outlook 5.3. Antidote Technologies 5.3.1. Company Overview 5.3.2. AI-based Clinical Trial Offerings 5.3.3. Recent Developments and Future Outlook 5.4. Deep 6 AI 5.4.1. Company Overview 5.4.2. AI-based Clinical Trial Offerings 5.4.3. Recent Developments and Future Outlook 5.5. Innoplexus 5.5.1. Company Overview 5.5.2. AI-based Clinical Trial Offerings 5.5.3. Recent Developments and Future Outlook 5.6. IQVIA 5.6.1. Company Overview 5.6.2. Financial Information 5.6.3. AI-based Clinical Trial Offerings 5.6.4. Recent Developments and Future Outlook 5.7. Median Technologies 5.7.1. Company Overview 5.7.2. Financial Information 5.7.3. AI-based Clinical Trial Offerings 5.7.4. Recent Developments and Future Outlook 5.8. Medidata 5.8.1. Company Overview 5.8.2. Financial Information 5.8.3. AI-based Clinical Trial Offerings 5.8.4. Recent Developments and Future Outlook 5.9. Mendel.ai 5.9.1. Company Overview 5.9.2. AI-based Clinical Trial Offerings 5.9.3. Recent Developments and Future Outlook 5.10. Phesi 5.10.1. Company Overview 5.10.2. AI-based Clinical Trial Offerings 5.10.3. Recent Developments and Future Outlook 5.11. Saama Technologies 5.11.1. Company Overview 5.11.2. AI-based Clinical Trial Offerings 5.11.3. Recent Developments and Future Outlook 5.12. Signant Health 5.12.1. Company Overview 5.12.2. AI-based Clinical Trial Offerings 5.12.3. Recent Developments and Future Outlook 5.13. Trials.ai 5.13.1. Company Overview 5.13.2. AI-based Clinical Trial Offerings 5.13.3. Recent Developments and Future Outlook 6. CLINICAL TRIAL ANALYSIS 6.1. Chapter Overview 6.2. Scope and Methodology 6.3. AI in Clinical Trials 6.3.1. Analysis by Trial Registration Year 6.3.2. Analysis by Number of Patients Enrolled 6.3.3. Analysis by Trial Phase 6.3.4. Analysis by Trial Status 6.3.5. Analysis by Trial Registration Year and Status 6.3.6. Analysis by Type of Sponsor 6.3.7. Analysis by Patient Gender 6.3.8. Analysis by Patient Age 6.3.9. Word Cloud Analysis: Emerging Focus Areas 6.3.10. Analysis by Target Therapeutic Area 6.3.11. Analysis by Study Design 6.3.11.1. Analysis by Type of Patient Allocation Model Used 6.3.11.2. Analysis by Type of Trial Masking Adopted 6.3.11.3. Analysis by Type of Intervention 6.3.11.4. Analysis by Trial Purpose 6.3.12. Most Active Players: Analysis by Number of Clinical Trials 6.3.13. Analysis of Clinical Trials by Geography 6.3.14. Analysis of Clinical Trials by Geography and Trial Status 6.3.15. Analysis of Patients Enrolled by Geography and Trial Registration Year 6.3.16. Analysis of Patients Enrolled by Geography and Trial Status 7. PARTNERSHIPS AND COLLABORATIONS 7.1. Chapter Overview 7.2. Partnership Models 7.3. AI in Clinical Trials: Partnerships and Collaborations 7.3.1. Analysis by Year of Partnership 7.3.2. Analysis by Type of Partnership 7.3.3. Analysis by Year and Type of Partnership 7.3.4. Analysis by Application Area 7.3.5. Analysis by Target Therapeutic Area 7.3.6. Analysis by Type of Partner 7.3.7. Most Active Players: Analysis by Number of Partnerships 7.3.8. Analysis by Geography 7.3.8.1. Local and International Agreements 7.3.8.2. Intercontinental and Intracontinental Agreements 8. FUNDING AND INVESTMENT ANALYSIS 8.1. Chapter Overview 8.2. Types of Funding 8.3. AI in Clinical Trials: Funding and Investments 8.3.1. Analysis by Year of Funding 8.3.2. Analysis by Amount Invested 8.3.3. Analysis by Type of Funding 8.3.4. Analysis by Year and Type of Funding 8.3.5. Analysis by Type of Funding and Amount Invested 8.3.6. Analysis by Application Area 8.3.7. Analysis by Geography 8.3.8. Most Active Players: Analysis by Number of Funding Instances and Amount Raised 8.3.9. Leading Investors: Analysis by Number of Funding Instances 8.4. Concluding Remarks 9. BIG PHARMA INITIATIVES 9.1. Chapter Overview 9.2. Scope and Methodology 9.3. Analysis by Year of Initiative 9.4. Analysis by Type of Initiative 9.5. Analysis by Application Area of AI 9.6. Analysis by Target Therapeutic Area 9.7. Benchmarking Analysis: Big Pharma Players 10. AI IN CLINICAL TRIALS: USE CASES 10.1. Chapter Overview 10.2. Use Case 1: Collaboration between Roche and AiCure 10.2.1. Roche 10.2.2. AiCure 10.2.3. Business Needs 10.2.4. Objectives Achieved and Solutions Provided 10.3. Use Case 2: Collaboration between Takeda and AiCure 10.3.1. Takeda 10.3.2. AiCure 10.3.3. Business Needs 10.3.4. Objectives Achieved and Solutions Provided 10.4. Use Case 3: Collaboration between Teva Pharmaceuticals and Intel 10.4.1. Teva Pharmaceuticals 10.4.2. Intel 10.4.3. Business Needs 10.4.4. Objectives Achieved and Solutions Provided 10.5. Use Case 4: Collaboration between Undisclosed Pharmaceutical Company and Antidote 10.5.1. Antidote 10.5.2. Business Needs 10.5.3. Objectives Achieved and Solutions Provided 10.6. Use Case 5: Collaboration between Undisclosed Pharmaceutical Company and Cognizant 10.6.1. Cognizant 10.6.2. Business Needs 10.6.3. Objectives Achieved and Solutions Offered 10.7. Use Case 6: Collaboration between Cedars-Sinai Medical Center and Deep 6 AI 10.7.1. Cedars-Sinai Medical Center 10.7.2. Deep 6 AI 10.7.3. Business Needs 10.7.4. Objectives Achieved and Solutions Offered 10.8. Use Case 7: Collaboration between GlaxoSmithKline (GSK) and PathAI 10.8.1. PathAI 10.8.2. GlaxoSmithKline (GSK) 10.8.3. Business Needs 10.8.4. Objectives Achieved and Solutions Provided 10.9. Use Case 8: Collaboration between Bristol Myers Squibb (BMS) and Concert AI 10.9.1. Concert AI 10.9.2. Bristol Myers Squibb (BMS) 10.9.3. Business Needs 10.9.4. Objectives Achieved and Solutions Provided 11. VALUE CREATION FRAMEWORK: A STRATEGIC GUIDE TO ADDRESS UNMET NEEDS IN CLINICAL TRIALS 11.1. Chapter Overview 11.2. Unmet Needs in Clinical Trials 11.3. Key Assumptions and Methodology 11.4. Key Tools and Technologies 11.4.1. Blockchain 11.4.2. Big Data Analytics 11.4.3. Real-world Evidence 11.4.4. Digital Twins 11.4.5. Cloud Computing 11.4.6. Internet of Things (IoT) 11.5. Trends in Research Activity 11.6. Trends in Intellectual Capital 11.7. Extent of Innovation versus Associated Risks 11.8. Results and Discussion 12. COST SAVING ANALYSIS 12.1. Chapter Overview 12.2. Key Assumptions and Methodology 12.3. Overall Cost Saving Potential of AI in Clinical Trials, 2023-2035 12.3.1. Cost Saving Potential: Distribution by Trial Phase, 2023 and 2035 12.3.1.1. Cost Saving Potential in Phase I Clinical Trials, 2023-2035 12.3.1.2. Cost Saving Potential in Phase II Clinical Trials, 2023-2035 12.3.1.3. Cost Saving Potential in Phase III Clinical Trials, 2023-2035 12.3.2. Cost Saving Potential: Distribution by Trial Procedure, 2023 and 2035 12.3.2.1. Cost Saving Potential in Patient Recruitment, 2023-2035 12.3.2.2. Cost Saving Potential in Patient Retention, 2023-2035 12.3.2.3. Cost Saving Potential in Staffing and Administration, 2023-2035 12.3.2.4. Cost Saving Potential in Site Monitoring, 2023-2035 12.3.2.5. Cost Saving Potential in Source Data Verification, 2023-2035 12.3.2.6. Cost Saving Potential in Other Procedures, 2023-2035 12.4. Conclusion 13. MARKET FORECAST AND OPPORTUNITY ANALYSIS 13.1. Chapter Overview 13.2. Key Assumptions and Forecast Methodology 13.3. Global AI in Clinical Trials Market, 2018-2035 13.3.1. AI in Clinical Trials Market: Distribution by Trial Phase, 2023 and 2035 13.3.1.1. AI in Clinical Trials Market for Phase I, 2023-2035 13.3.1.2. AI in Clinical Trials Market for Phase II, 2023-2035 13.3.1.3. AI in Clinical Trials Market for Phase III, 2023-2035 13.3.2. AI in Clinical Trials Market: Distribution by Target Therapeutic Area, 2023 and 2035 13.3.2.1. AI in Clinical Trials Market for Cardiovascular Disorders, 2023-2035 13.3.2.2. AI in Clinical Trials Market for CNS Disorders, 2023-2035 13.3.2.3. AI in Clinical Trials Market for Infectious Diseases, 2023-2035 13.3.2.4. AI in Clinical Trials Market for Metabolic Disorders, 2023-2035 13.3.2.5. AI in Clinical Trials Market for Oncological Disorders, 2023-2035 13.3.2.6. AI in Clinical Trials Market for Other Disorders, 2023-2035 13.3.3. AI in Clinical Trials Market: Distribution by End-user, 2023 and 2035 13.3.3.1. AI in Clinical Trials Market for Pharmaceutical and Biotechnology Companies, 2023-2035 13.3.3.2. AI in Clinical Trials Market for Other End-users, 2023-2035 13.3.4. AI in Clinical Trials Market: Distribution by Key Geographical Regions, 2023 and 2035 13.3.4.1. AI in Clinical Trials Market in North America, 2023-2035 13.3.4.2. AI in Clinical Trials Market in Europe, 2023-2035 13.3.4.3. AI in Clinical Trials Market in Asia-Pacific, 2023-2035 13.3.4.4. AI in Clinical Trials Market in Middle East and North Africa, 2023-2035 10.3.4.4. AI in Clinical Trials Market in Latin America, 2023-2035 14. CONCLUSION 15. EXECUTIVE INSIGHTS 15.1. Chapter Overview 15.2. Ancora.ai 15.2.1. Company Snapshot 15.2.2. Interview Transcript: Danielle Ralic, Co-Founder, Chief Executive Officer and Chief Technology Officer 15.3. Deep 6 AI 15.3.1. Company Snapshot 15.3.2. Interview Transcript: Wout Brusselaers, Founder and Chief Executive Officer 15.4. Intelligencia 15.4.1. Company Snapshot 15.4.2. Interview Transcript: Dimitrios Skaltsas, Co-Founder and Executive Director 15.5. nQ Medical 15.5.1. Company Snapshot 15.5.2. Interview Transcript: R. A. Bavasso, Founder and Chief Executive Officer 15.6. Science 37 15.6.1. Company Snapshot 15.6.2. Interview Transcript: Troy Bryenton (Chief Technology Officer), Michael Shipton (Chief Commercial Officer), Darcy Forman (Chief Delivery Officer), Grazia Mohren (Head of Marketing) 16. APPENDIX I: TABULATED DATA 17. APPENDIX II: LIST OF COMPANIES AND ORGANIZATION
SummaryThe AI in clinical trials market is expected to reach USD 8.50 billion by 2035 and is anticipated to grow at a CAGR of 16% during the forecast period 2023-2035 Table of Contents1. PREFACE1.1. AI in Clinical Trials Overview 1.2. Key Market Insights 1.3. Scope of the Report 1.4. Research Methodology 1.5. Frequently Asked Questions 1.6. Chapter Outlines 2. EXECUTIVE SUMMARY 3. INTRODUCTION 3.1. Chapter Overview 3.2. Evolution of AI 3.3. Subfields of AI 3.4. Applications of AI in Healthcare 3.4.1. Drug Discovery 3.4.2. Drug Manufacturing 3.4.3. Marketing 3.4.4. Diagnosis and Treatment 3.4.5. Clinical Trials 3.5. Applications of AI in Clinical Trials 3.6. Challenges Associated with the Adoption of AI 3.7. Future Perspective 4. MARKET LANDSCAPE 4.1. Chapter Overview 4.2. AI in Clinical Trials: AI Software and Service Providers Landscape 4.2.1. Analysis by Year of Establishment 4.2.2. Analysis by Company Size 4.2.3. Analysis by Location of Headquarters 4.2.4. Analysis by Company Size and Location of Headquarters (Region-wise) 4.2.5. Analysis by Key Offering(s) 4.2.6. Analysis by Business Model(s) 4.2.7. Analysis by Deployment Option(s) 4.2.8. Analysis by Type of AI Technology 4.2.9. Analysis by Application Area(s) 4.2.10. Analysis by Potential End-user(s) 5. COMPANY PROFILES 5.1. Chapter Overview 5.2. AiCure 5.2.1. Company Overview 5.2.2. AI-based Clinical Trial Offerings 5.2.3. Recent Developments and Future Outlook 5.3. Antidote Technologies 5.3.1. Company Overview 5.3.2. AI-based Clinical Trial Offerings 5.3.3. Recent Developments and Future Outlook 5.4. Deep 6 AI 5.4.1. Company Overview 5.4.2. AI-based Clinical Trial Offerings 5.4.3. Recent Developments and Future Outlook 5.5. Innoplexus 5.5.1. Company Overview 5.5.2. AI-based Clinical Trial Offerings 5.5.3. Recent Developments and Future Outlook 5.6. IQVIA 5.6.1. Company Overview 5.6.2. Financial Information 5.6.3. AI-based Clinical Trial Offerings 5.6.4. Recent Developments and Future Outlook 5.7. Median Technologies 5.7.1. Company Overview 5.7.2. Financial Information 5.7.3. AI-based Clinical Trial Offerings 5.7.4. Recent Developments and Future Outlook 5.8. Medidata 5.8.1. Company Overview 5.8.2. Financial Information 5.8.3. AI-based Clinical Trial Offerings 5.8.4. Recent Developments and Future Outlook 5.9. Mendel.ai 5.9.1. Company Overview 5.9.2. AI-based Clinical Trial Offerings 5.9.3. Recent Developments and Future Outlook 5.10. Phesi 5.10.1. Company Overview 5.10.2. AI-based Clinical Trial Offerings 5.10.3. Recent Developments and Future Outlook 5.11. Saama Technologies 5.11.1. Company Overview 5.11.2. AI-based Clinical Trial Offerings 5.11.3. Recent Developments and Future Outlook 5.12. Signant Health 5.12.1. Company Overview 5.12.2. AI-based Clinical Trial Offerings 5.12.3. Recent Developments and Future Outlook 5.13. Trials.ai 5.13.1. Company Overview 5.13.2. AI-based Clinical Trial Offerings 5.13.3. Recent Developments and Future Outlook 6. CLINICAL TRIAL ANALYSIS 6.1. Chapter Overview 6.2. Scope and Methodology 6.3. AI in Clinical Trials 6.3.1. Analysis by Trial Registration Year 6.3.2. Analysis by Number of Patients Enrolled 6.3.3. Analysis by Trial Phase 6.3.4. Analysis by Trial Status 6.3.5. Analysis by Trial Registration Year and Status 6.3.6. Analysis by Type of Sponsor 6.3.7. Analysis by Patient Gender 6.3.8. Analysis by Patient Age 6.3.9. Word Cloud Analysis: Emerging Focus Areas 6.3.10. Analysis by Target Therapeutic Area 6.3.11. Analysis by Study Design 6.3.11.1. Analysis by Type of Patient Allocation Model Used 6.3.11.2. Analysis by Type of Trial Masking Adopted 6.3.11.3. Analysis by Type of Intervention 6.3.11.4. Analysis by Trial Purpose 6.3.12. Most Active Players: Analysis by Number of Clinical Trials 6.3.13. Analysis of Clinical Trials by Geography 6.3.14. Analysis of Clinical Trials by Geography and Trial Status 6.3.15. Analysis of Patients Enrolled by Geography and Trial Registration Year 6.3.16. Analysis of Patients Enrolled by Geography and Trial Status 7. PARTNERSHIPS AND COLLABORATIONS 7.1. Chapter Overview 7.2. Partnership Models 7.3. AI in Clinical Trials: Partnerships and Collaborations 7.3.1. Analysis by Year of Partnership 7.3.2. Analysis by Type of Partnership 7.3.3. Analysis by Year and Type of Partnership 7.3.4. Analysis by Application Area 7.3.5. Analysis by Target Therapeutic Area 7.3.6. Analysis by Type of Partner 7.3.7. Most Active Players: Analysis by Number of Partnerships 7.3.8. Analysis by Geography 7.3.8.1. Local and International Agreements 7.3.8.2. Intercontinental and Intracontinental Agreements 8. FUNDING AND INVESTMENT ANALYSIS 8.1. Chapter Overview 8.2. Types of Funding 8.3. AI in Clinical Trials: Funding and Investments 8.3.1. Analysis by Year of Funding 8.3.2. Analysis by Amount Invested 8.3.3. Analysis by Type of Funding 8.3.4. Analysis by Year and Type of Funding 8.3.5. Analysis by Type of Funding and Amount Invested 8.3.6. Analysis by Application Area 8.3.7. Analysis by Geography 8.3.8. Most Active Players: Analysis by Number of Funding Instances and Amount Raised 8.3.9. Leading Investors: Analysis by Number of Funding Instances 8.4. Concluding Remarks 9. BIG PHARMA INITIATIVES 9.1. Chapter Overview 9.2. Scope and Methodology 9.3. Analysis by Year of Initiative 9.4. Analysis by Type of Initiative 9.5. Analysis by Application Area of AI 9.6. Analysis by Target Therapeutic Area 9.7. Benchmarking Analysis: Big Pharma Players 10. AI IN CLINICAL TRIALS: USE CASES 10.1. Chapter Overview 10.2. Use Case 1: Collaboration between Roche and AiCure 10.2.1. Roche 10.2.2. AiCure 10.2.3. Business Needs 10.2.4. Objectives Achieved and Solutions Provided 10.3. Use Case 2: Collaboration between Takeda and AiCure 10.3.1. Takeda 10.3.2. AiCure 10.3.3. Business Needs 10.3.4. Objectives Achieved and Solutions Provided 10.4. Use Case 3: Collaboration between Teva Pharmaceuticals and Intel 10.4.1. Teva Pharmaceuticals 10.4.2. Intel 10.4.3. Business Needs 10.4.4. Objectives Achieved and Solutions Provided 10.5. Use Case 4: Collaboration between Undisclosed Pharmaceutical Company and Antidote 10.5.1. Antidote 10.5.2. Business Needs 10.5.3. Objectives Achieved and Solutions Provided 10.6. Use Case 5: Collaboration between Undisclosed Pharmaceutical Company and Cognizant 10.6.1. Cognizant 10.6.2. Business Needs 10.6.3. Objectives Achieved and Solutions Offered 10.7. Use Case 6: Collaboration between Cedars-Sinai Medical Center and Deep 6 AI 10.7.1. Cedars-Sinai Medical Center 10.7.2. Deep 6 AI 10.7.3. Business Needs 10.7.4. Objectives Achieved and Solutions Offered 10.8. Use Case 7: Collaboration between GlaxoSmithKline (GSK) and PathAI 10.8.1. PathAI 10.8.2. GlaxoSmithKline (GSK) 10.8.3. Business Needs 10.8.4. Objectives Achieved and Solutions Provided 10.9. Use Case 8: Collaboration between Bristol Myers Squibb (BMS) and Concert AI 10.9.1. Concert AI 10.9.2. Bristol Myers Squibb (BMS) 10.9.3. Business Needs 10.9.4. Objectives Achieved and Solutions Provided 11. VALUE CREATION FRAMEWORK: A STRATEGIC GUIDE TO ADDRESS UNMET NEEDS IN CLINICAL TRIALS 11.1. Chapter Overview 11.2. Unmet Needs in Clinical Trials 11.3. Key Assumptions and Methodology 11.4. Key Tools and Technologies 11.4.1. Blockchain 11.4.2. Big Data Analytics 11.4.3. Real-world Evidence 11.4.4. Digital Twins 11.4.5. Cloud Computing 11.4.6. Internet of Things (IoT) 11.5. Trends in Research Activity 11.6. Trends in Intellectual Capital 11.7. Extent of Innovation versus Associated Risks 11.8. Results and Discussion 12. COST SAVING ANALYSIS 12.1. Chapter Overview 12.2. Key Assumptions and Methodology 12.3. Overall Cost Saving Potential of AI in Clinical Trials, 2023-2035 12.3.1. Cost Saving Potential: Distribution by Trial Phase, 2023 and 2035 12.3.1.1. Cost Saving Potential in Phase I Clinical Trials, 2023-2035 12.3.1.2. Cost Saving Potential in Phase II Clinical Trials, 2023-2035 12.3.1.3. Cost Saving Potential in Phase III Clinical Trials, 2023-2035 12.3.2. Cost Saving Potential: Distribution by Trial Procedure, 2023 and 2035 12.3.2.1. Cost Saving Potential in Patient Recruitment, 2023-2035 12.3.2.2. Cost Saving Potential in Patient Retention, 2023-2035 12.3.2.3. Cost Saving Potential in Staffing and Administration, 2023-2035 12.3.2.4. Cost Saving Potential in Site Monitoring, 2023-2035 12.3.2.5. Cost Saving Potential in Source Data Verification, 2023-2035 12.3.2.6. Cost Saving Potential in Other Procedures, 2023-2035 12.4. Conclusion 13. MARKET FORECAST AND OPPORTUNITY ANALYSIS 13.1. Chapter Overview 13.2. Key Assumptions and Forecast Methodology 13.3. Global AI in Clinical Trials Market, 2018-2035 13.3.1. AI in Clinical Trials Market: Distribution by Trial Phase, 2023 and 2035 13.3.1.1. AI in Clinical Trials Market for Phase I, 2023-2035 13.3.1.2. AI in Clinical Trials Market for Phase II, 2023-2035 13.3.1.3. AI in Clinical Trials Market for Phase III, 2023-2035 13.3.2. AI in Clinical Trials Market: Distribution by Target Therapeutic Area, 2023 and 2035 13.3.2.1. AI in Clinical Trials Market for Cardiovascular Disorders, 2023-2035 13.3.2.2. AI in Clinical Trials Market for CNS Disorders, 2023-2035 13.3.2.3. AI in Clinical Trials Market for Infectious Diseases, 2023-2035 13.3.2.4. AI in Clinical Trials Market for Metabolic Disorders, 2023-2035 13.3.2.5. AI in Clinical Trials Market for Oncological Disorders, 2023-2035 13.3.2.6. AI in Clinical Trials Market for Other Disorders, 2023-2035 13.3.3. AI in Clinical Trials Market: Distribution by End-user, 2023 and 2035 13.3.3.1. AI in Clinical Trials Market for Pharmaceutical and Biotechnology Companies, 2023-2035 13.3.3.2. AI in Clinical Trials Market for Other End-users, 2023-2035 13.3.4. AI in Clinical Trials Market: Distribution by Key Geographical Regions, 2023 and 2035 13.3.4.1. AI in Clinical Trials Market in North America, 2023-2035 13.3.4.2. AI in Clinical Trials Market in Europe, 2023-2035 13.3.4.3. AI in Clinical Trials Market in Asia-Pacific, 2023-2035 13.3.4.4. AI in Clinical Trials Market in Middle East and North Africa, 2023-2035 10.3.4.4. AI in Clinical Trials Market in Latin America, 2023-2035 14. CONCLUSION 15. EXECUTIVE INSIGHTS 15.1. Chapter Overview 15.2. Ancora.ai 15.2.1. Company Snapshot 15.2.2. Interview Transcript: Danielle Ralic, Co-Founder, Chief Executive Officer and Chief Technology Officer 15.3. Deep 6 AI 15.3.1. Company Snapshot 15.3.2. Interview Transcript: Wout Brusselaers, Founder and Chief Executive Officer 15.4. Intelligencia 15.4.1. Company Snapshot 15.4.2. Interview Transcript: Dimitrios Skaltsas, Co-Founder and Executive Director 15.5. nQ Medical 15.5.1. Company Snapshot 15.5.2. Interview Transcript: R. A. Bavasso, Founder and Chief Executive Officer 15.6. Science 37 15.6.1. Company Snapshot 15.6.2. Interview Transcript: Troy Bryenton (Chief Technology Officer), Michael Shipton (Chief Commercial Officer), Darcy Forman (Chief Delivery Officer), Grazia Mohren (Head of Marketing) 16. APPENDIX I: TABULATED DATA 17. APPENDIX II: LIST OF COMPANIES AND ORGANIZATION
ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。本レポートと同分野の最新刊レポート
Roots Analysis社の分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
よくあるご質問Roots Analysis社はどのような調査会社ですか?Roots Analysisは2013年設立の医薬品・医療機器が専門の調査会社です。 医薬品の製造委託や創薬のデジタル化など、最新の医薬業界の分析を行っています。 もっと見る 調査レポートの納品までの日数はどの程度ですか?在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
注文の手続きはどのようになっていますか?1)お客様からの御問い合わせをいただきます。
お支払方法の方法はどのようになっていますか?納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
データリソース社はどのような会社ですか?当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
|
詳細検索
2024/11/22 10:26 155.52 円 163.34 円 198.56 円 |