世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

創薬におけるディープラーニング市場と診断におけるディープラーニング市場(第2版)、2023-2035年:治療領域別(腫瘍疾患、感染症、神経疾患、免疫疾患、内分泌疾患、心血管疾患、呼吸器疾患、眼疾患、筋骨格系疾患、炎症性疾患、その他の疾患)および主要地域別(北米、欧州、アジア太平洋地域、その他の地域)の分布:産業動向と世界予測、2023-2035年


Deep Learning in Drug Discovery Market and Deep Learning in Diagnostics Market (2nd Edition), 2023-2035: Distribution by Therapeutic Area (Oncological Disorders, Infectious Diseases, Neurological Disorders, Immunological Disorders, Endocrine Disorders, Cardiovascular Disorders, Respiratory Disorders, Eye Disorders, Musculoskeletal Disorders, Inflammatory Disorders and Other Disorders) and Key Geographical Regions (North America, Europe, Asia Pacific and Rest of the World): Industry Trends and Global Forecasts, 2023-2035

ディープラーニング市場は2023年に345億ドルに達すると予測され、2023年から2035年の予測期間中に年平均成長率21.9%で成長すると予測されている。 20世紀半ば以降のコンピューティングデバイスの評価は、基本... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
Roots Analysis
ルーツアナリシス
2023年3月14日 US$4,799
シングルユーザライセンス
ライセンス・価格情報
注文方法はこちら
420 英語

 

サマリー

ディープラーニング市場は2023年に345億ドルに達すると予測され、2023年から2035年の予測期間中に年平均成長率21.9%で成長すると予測されている。

20世紀半ば以降のコンピューティングデバイスの評価は、基本的な計算という当初の目的を超え、人工知能(AI)の出現につながった。この分野では、機械がデータを理解し、従来のプログラミングを超えるタスクを実行する力を持つようになった。AIの中核には機械学習があり、明示的なプログラミングなしにコンピューターが学習し適応することを可能にしている。機械学習の中でもディープラーニングは、特にビッグデータ分析において、膨大な量の非構造化データを解釈し、貴重な洞察をもたらすために多層ニューラルネットワークを採用する洗練されたサブセットとして際立っている。
ライフサイエンス、特に創薬や診断などの領域では、ディープラーニングの応用は人間の脳を模倣する能力に由来している。ヘルスケア分野における診断学は、特にディープラーニングの能力の恩恵を受けている。高い離職率や経済的負担など、創薬で遭遇する課題に対処するため、ディープラーニングはこの分野の生産性を大幅に向上させた。最近のディープラーニング技術の進歩により、医療画像、分子プロファイリング、仮想スクリーニング、包括的なデータ分析など、その応用範囲は広がっている。
継続的な技術革新に後押しされ、医療と創薬におけるディープラーニング市場は大幅な成長を遂げようとしている。ディープラーニング技術の継続的な進歩と組み合わされた計算医学の多大な影響は、この分野の有望な将来を予感させ、予測期間における市場の大幅な拡大を示している。

レポート範囲
 調査で得られた重要な洞察をまとめたエグゼクティブサマリー。ディープラーニング市場の現状と中長期的に予想される進化についてハイレベルな見解を提供しています。
 医療業界におけるビッグデータ革命の概要。また、医療分野における人工知能、機械学習、ディープラーニング・アルゴリズムに関する情報も紹介している。さらに、本章の締めくくりとして、医療分野におけるディープラーニングの様々な応用について考察している。
 創薬目的でディープラーニング技術やサービスを提供する70社以上の企業について、設立年、企業規模、本社所在地、応用分野、重点領域、治療分野、業務モデルなどの関連パラメータに加え、企業のサービスや製品中心モデルに関する情報を基に、市場全体の状況を詳細に評価。
 北米、欧州、アジア太平洋地域に所在し、特に創薬と診断のためのディープラーニングに関連する技術を開発し、サービスを提供する主要企業の詳細なプロフィール(独自の基準に基づいてショートリスト化)。各プロフィールには、財務情報(入手可能な場合)、サービス・ポートフォリオ、最近の開発状況、将来の見通しに関する詳細とともに、企業の簡単な概要が記載されています。
 新規参入企業の脅威、ディープラーニングに基づく創薬・診断法を利用する企業の交渉力、医薬品開発企業の交渉力、代替技術の脅威、既存競合企業間の競争など、この領域で普及している5つの競争力に焦点を当てた定性的分析。
 治験登録年、治験状況、患者登録数、スポンサー/共同研究者のタイプ、治療領域、試験重点領域、試験デザイン、地域など、複数の関連パラメータに基づき、完了済みおよび進行中の420以上の臨床試験を詳細に分析。さらに、本章では、最も活発な業界および非業界のプレーヤー(実施された臨床試験の数で)を紹介している。
 資金調達年、投資額、資金調達の種類(シードファイナンス、ベンチャーキャピタルファイナンス、IPO、セカンダリーオファリング、デットファイナンス、助成金、その他のオファリング)、重点領域、治療領域、地域など、いくつかの関連パラメータに基づいて、この領域に従事するプレーヤーが2019年から2022年の間に行った様々な投資の詳細な分析。さらに、本章では、最も活発なプレーヤー(資金調達事例数、投資額)、主要投資家(資金調達事例数)を紹介している。
 創薬・診断に特化したディープラーニング市場に従事する新興企業/小規模プレイヤー(2015年以降設立、従業員50人未満)の分析。本章では、注力分野、治療分野、事業モデル、対応デバイス、提供タイプ、新興企業の健康指標など、いくつかの関連パラメータに関する情報を掲載している。
 ディープラーニングに基づく創薬・診断市場に関わる企業のバリュエーション分析。当社独自の多変数依存バリュエーションモデルに基づき、業界プレイヤーの現在のバリュエーション/純資産を推定。
 洞察に満ちた市場予測と機会分析により、2035年までのディープラーニングによる創薬市場の将来成長の可能性を浮き彫りにする。将来の機会に関する詳細を提供するため、当社の予測は治療分野(腫瘍疾患、感染症、神経疾患、免疫疾患、内分泌疾患、心血管疾患、呼吸器疾患、その他の疾患)および主要地域(北米、欧州、アジア太平洋地域、その他の地域)に基づいてセグメント化されています。さらに、本章には、創薬にディープラーニング技術を導入することによるコスト削減の可能性の推定値も含まれている。
 洞察に満ちた市場予測と機会分析で、2035年までの診断におけるディープラーニング市場の将来成長を強調する。将来の機会に関する詳細を提供するために、我々の予測は治療分野(腫瘍疾患、心血管疾患、神経疾患、内分泌疾患、呼吸器疾患、眼科疾患、感染症、筋骨格系疾患、炎症性疾患、その他の疾患)および主要地域(北米、欧州、アジア太平洋地域、その他の地域)に基づいてセグメント化されています。さらに本章では、診断にディープラーニング技術を導入することによるコスト削減の可能性の推定も行っている。
 ヘルスケア分野におけるディープラーニングの応用と課題に関して、選ばれた主要オピニオンリーダーが表明した意見。この章では、これらの専門家によるプレゼンテーションやビデオからの重要なポイントを提供し、ヘルスケア業界におけるこれらのモデルの将来的な機会を強調している。

主要市場企業
 Aegicare
 アイフォリア・テクノロジーズ
 アルディゲン
 ベルク
 グーグル
 ファーウェイ
 メラティブ
 Nference
 エヌビディア
 オウキン
 Phenomic AI
 ピクセルAI

ページTOPに戻る


目次

1. PREFACE
1.1. Introduction
1.2. Key Market Insights
1.3. Scope of the Report
1.4. Research Methodology
1.5. Frequently Asked Questions
1.6. Chapter Outlines
2. EXECUTIVE SUMMARY
3. INTRODUCTION
3.1. Humans, Machines and Intelligence
3.2. The Science of Learning
3.2.1. Teaching Machines
3.2.1.1. Machines for Computing
3.2.1.2. Artificial Intelligence
3.3. The Big Data Revolution
3.3.1. Overview of Big Data
3.3.2. Role of Internet of Things (IoT)
3.3.3. Key Application Areas of Big Data
3.3.3.1. Big Data Analytics in Healthcare
3.3.3.2. Machine Learning
3.3.3.3. Deep Learning
3.4. Deep Learning in Healthcare
3.4.1. Personalized Medicine
3.4.2. Lifestyle Management
3.4.3. Drug Discovery
3.4.4. Clinical Trial Management
3.4.5. Diagnostics
3.5. Concluding Remarks
4. MARKET OVERVIEW: DEEP LEARNING IN DRUG DISCOVERY
4.1. Chapter Overview
4.2. Deep Learning in Drug Discovery: Overall Market Landscape of Service / Technology Providers
4.2.1. Analysis by Year of Establishment
4.2.2. Analysis by Company Size
4.2.3. Analysis by Location of Headquarters
4.2.4. Analysis by Application Area
4.2.5. Analysis by Focus Area
4.2.6. Analysis by Therapeutic Area
4.2.7. Analysis by Operational Model
4.2.7.1. Analysis by Service Centric Model
4.2.7.2. Analysis by Product Centric Model
5. MARKET OVERVIEW: DEEP LEARNING IN DIAGNOSTICS
5.1. Chapter Overview
5.2. Deep Learning in Diagnostics: Overall Market Landscape of Service / Technology Providers
5.2.1. Analysis by Year of Establishment
5.2.2. Analysis by Company Size
5.2.3. Analysis by Location of Headquarters
5.2.4. Analysis by Application Area
5.2.5. Analysis by Focus Area
5.2.6. Analysis by Therapeutic Area
5.2.7. Analysis by Type of Offering / Solution
5.2.8. Analysis by Compatible Device
6. COMPANY PROFILES
6.1. Chapter Overview
6.2. Aegicare
6.2.1. Company Overview
6.2.2. Service Portfolio
6.2.3. Recent Developments and Future Outlook
6.3. Aiforia Technologies
6.3.1. Company Overview
6.3.2. Financial Information
6.3.3. Service Portfolio
6.3.4. Recent Developments and Future Outlook
6.4. Ardigen
6.4.1. Company Overview
6.4.2. Financial Information
6.4.3. Service Portfolio
6.4.4. Recent Developments and Future Outlook
6.5. Berg
6.5.1. Company Overview
6.5.2. Service Portfolio
6.5.3. Recent Developments and Future Outlook
6.6. Google
6.6.1. Company Overview
6.6.2. Financial Information
6.6.3. Service Portfolio
6.6.4. Recent Developments and Future Outlook
6.7. Huawei
6.7.1. Company Overview
6.7.2. Financial Information
6.7.3. Service Portfolio
6.7.4. Recent Developments and Future Outlook
6.8. Merative
6.8.1. Company Overview
6.8.2. Service Portfolio
6.8.3. Recent Developments and Future Outlook
6.9. Nference
6.9.1. Company Overview
6.9.2. Service Portfolio
6.9.3. Recent Developments and Future Outlook
6.10. Nvidia
6.10.1. Company Overview
6.10.2. Financial Information
6.10.3. Service Portfolio
6.10.4. Recent Developments and Future Outlook
6.11. Owkin
6.11.1. Company Overview
6.11.2. Service Portfolio
6.11.3. Recent Developments and Future Outlook
6.12. Phenomic AI
6.12.1. Company Overview
6.12.2. Service Portfolio
6.12.3. Recent Developments and Future Outlook
6.13. Pixel AI
6.13.1. Company Overview
6.13.2. Service Portfolio
6.13.3. Recent Developments and Future Outlook
7. PORTER’S FIVE FORCES ANALYSIS
7.1. Chapter Overview
7.2. Methodology and Assumptions
7.3. Key Parameters
7.3.1. Threats of New Entrants
7.3.2. Bargaining Power of Companies Using Deep Learning for Drug Discovery and Diagnostics
7.3.3. Bargaining Power of Drug Developers
7.3.4. Threats of Substitute Technologies
7.3.5. Rivalry Among Existing Competitors
7.4. Concluding Remarks
8. CLINICAL TRIAL ANALYSIS
8.1. Chapter Overview
8.2. Scope and Methodology
8.3 Deep Learning Market: Clinical Trial Analysis
8.3.1. Analysis by Trial Registration Year
8.3.2. Analysis by Trial Status
8.3.3. Analysis by Trial Registration Year and Patient Enrollment
8.3.4. Analysis by Trial Registration Year and Trial Status
8.3.5. Analysis by Type of Sponsor / Collaborator
8.3.6. Analysis by Therapeutic Area
8.3.7. Word Cloud: Trial Focus Area
8.3.8. Analysis by Study Design
8.3.9. Geographical Analysis by Number of Clinical Trials
8.3.10. Geographical Analysis by Trial Registration Year and Patient Population
8.3.11. Leading Organizations: Analysis by Number of Registered Trials
9. FUNDING AND INVESTMENT ANALYSIS
9.1. Chapter Overview
9.2. Types of Funding
9.3. Deep Learning Market: Funding and Investment Analysis
9.3.1. Analysis by Year of Funding
9.3.2. Analysis by Amount Invested
9.3.3. Analysis by Type of Funding
9.3.4. Analysis by Year and Type of Funding
9.3.5. Analysis by Focus Areas
9.3.6. Analysis by Therapeutic Area
9.3.7. Analysis by Geography
9.3.8. Most Active Players: Analysis by Number of Funding Instances
9.3.9. Most Active Players: Analysis by Amount Invested
9.3.10. Most Active Investors: Analysis by Number of Funding Instances
10. START-UP HEALTH INDEXING
10.1. Chapter Overview
10.2. Start-ups Focused on Deep Learning in Drug Discovery
10.2.1. Methodology and Key Parameters
10.2.2. Analysis by Location of Headquarters
10.3. Benchmarking Analysis of Start-ups Focused on Deep Learning in Drug Discovery
10.3.1. Analysis by Focus Area
10.3.2. Analysis by Therapeutic Area
10.3.3. Analysis by Operational Model
10.3.4. Start-up Health Indexing: Roots Analysis Perspective
10.4. Start-ups Focused on Deep Learning in Diagnostics
10.4.1. Methodology and Key Parameters
10.4.2. Analysis by Location of Headquarters
10.5. Benchmarking Analysis of Start-ups Focused on Deep Learning in Diagnostics
10.5.1. Analysis by Focus Area
10.5.2. Analysis by Therapeutic Area
10.5.3. Analysis by Compatible Device
10.5.4. Analysis by Type of Offering
10.5.5. Start-up Health Indexing: Roots Analysis Perspective
11. COMPANY VALUATION ANALYSIS
11.1. Chapter Overview
11.2. Company Valuation Analysis: Key Parameters
11.3. Methodology
11.4. Company Valuation Analysis: Roots Analysis Proprietary Scores
12. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DRUG DISCOVERY
12.1. Chapter Overview
12.2. Forecast Methodology
12.3. Key Assumptions
12.4. Overall Deep Learning in Drug Discovery Market, 2023-2035
12.4.1. Deep Learning in Drug Discovery Market: Analysis by Target Therapeutic Area, 2023-2035
12.4.1.1. Deep Learning in Drug Discovery Market for Oncological Disorders, 2023-2035
12.4.1.2. Deep Learning in Drug Discovery Market for Infectious Diseases, 2023-2035
12.4.1.3. Deep Learning in Drug Discovery Market for Neurological Disorders, 2023-2035
12.4.1.4. Deep Learning in Drug Discovery Market for Immunological Disorders, 2023-2035
12.4.1.5. Deep Learning in Drug Discovery Market for Endocrine Disorders, 2023-2035
12.4.1.6. Deep Learning in Drug Discovery Market for Cardiovascular Disorders, 2023-2035
12.4.1.7. Deep Learning in Drug Discovery Market for Respiratory Disorders, 2023-2035
12.4.1.8. Deep Learning in Drug Discovery Market for Other Disorders, 2023-2035
12.4.2. Deep Learning in Drug Discovery Market: Analysis by Geography, 2023-2035
12.4.2.1. Deep Learning in Drug Discovery Market in North America, 2023-2035
12.4.2.1.1. Deep Learning in Drug Discovery Market in the US, 2023-2035
12.4.2.1.2. Deep Learning in Drug Discovery Market in Canada, 2023-2035
12.4.2.2. Deep Learning in Drug Discovery Market in Europe, 2023-2035
12.4.2.2.1. Deep Learning in Drug Discovery Market in the UK, 2023-2035
12.4.2.2.2. Deep Learning in Drug Discovery Market in France, 2023-2035
12.4.2.2.3. Deep Learning in Drug Discovery Market in Germany, 2023-2035
12.4.2.2.4. Deep Learning in Drug Discovery Market in Spain, 2023-2035
12.4.2.2.5. Deep Learning in Drug Discovery Market in Italy, 2023-2035
12.4.2.2.6. Deep Learning in Drug Discovery Market in Rest of Europe, 2023-2035
12.4.2.3. Deep Learning in Drug Discovery Market in Asia Pacific, 2023-2035
12.4.2.3.1. Deep Learning in Drug Discovery Market in China, 2023-2035
12.4.2.3.2. Deep Learning in Drug Discovery Market in India, 2023-2035
12.4.2.3.3. Deep Learning in Drug Discovery Market in Japan, 2023-2035
12.4.2.3.4. Deep Learning in Drug Discovery Market in Australia, 2023-2035
12.4.2.3.5. Deep Learning in Drug Discovery Market in South Korea, 2023-2035
12.4.2.4. Deep Learning in Drug Discovery Market in Rest of the World, 2023-2035
12.5. Deep Learning in Drug Discovery Market: Cost Saving Potential
12.5.1. Key Assumptions and Methodology
12.5.2. Deep Learning in Drug Discovery Market: Overall Cost Saving Potential, 2023-2035
13. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DIAGNOSTICS
13.1. Chapter Overview
13.2. Forecast Methodology
13.3. Key Assumptions
13.4. Overall Deep Learning in Diagnostics Market, 2023-2035
13.4.1. Deep Learning in Diagnostics Market: Analysis by Target Therapeutic Area, 2023-2035
13.4.1.1. Deep Learning in Diagnostics Market for Oncological Disorders, 2023-2035
13.4.1.2. Deep Learning in Diagnostics Market for Cardiovascular Disorders, 2023-2035
13.4.1.3. Deep Learning in Diagnostics Market for Neurological Disorders, 2023-2035
13.4.1.4. Deep Learning in Diagnostics Market for Endocrine Disorders, 2023-2035
13.4.1.5. Deep Learning in Diagnostics Market for Respiratory Disorders, 2023-2035
13.4.1.6. Deep Learning in Diagnostics Market for Ophthalmic Disorders, 2023-2035
13.4.1.7. Deep Learning in Diagnostics Market for Infectious Diseases, 2023-2035
13.4.1.8. Deep Learning in Diagnostics Market for Musculoskeletal Disorders, 2023-2035
13.4.1.9. Deep Learning in Diagnostics Market for Inflammatory Disorders, 2023-2035
13.4.1.10. Deep Learning in Diagnostics Market for Other Disorders, 2023-2035
13.4.2. Deep Learning in Diagnostics Market: Analysis by Geography, 2023-2035
13.4.2.1. Deep Learning in Diagnostics Market in North America, 2023-2035
13.4.2.2. Deep Learning in Diagnostics Market in Europe, 2023-2035
13.4.2.3. Deep Learning in Diagnostics Market in Asia Pacific, 2023-2035
13.4.2.4. Deep Learning in Diagnostics Market in Rest of the World, 2023-2035
13.5. Deep Learning in Diagnostics Market: Cost Saving Potential
13.5.1. Key Assumptions and Methodology
13.5.2. Deep Learning in Diagnostics Market: Overall Cost Saving Potential, 2023-2035
14. DEEP LEARNING IN HEALTHCARE: EXPERT INSIGHTS
14.1. Chapter Overview
14.2. Sean Lane, Chief Executive Officer (Olive)
14.3. Junaid Kalia, Founder (NeuroCare.AI) and Adeel Memon, Assistant Professor, Neurology Specialist (West Virginia University Hospitals)
14.4. David Reich, President / Chief Operating Officer (The Mount Sinai Hospital) and Robbie Freeman, Vice President of Clinical Innovation (The Mount Sinai Hospital)
14.5. Elad Benjamin, Vice President, Business Leader Clinical Data Services (Philips) and Jonathan Laserson, Senior Deep Learning Researcher (Apple)
14.6. Kevin Lyman, Founder and Chief Science Officer (Enlitic)
15. CONCLUDING REMARKS
16. INTERVIEW TRANSCRIPTS
16.1. Chapter Overview
16.2. Nucleai
16.2.1. Company Overview
16.2.2. Interview Transcript: Avi Veidman, Chief Executive Officer and Emily Salerno, Commercial Strategy and Operations Lead
16.3. Mediwhale
16.3.1. Company Overview
16.3.2. Interview Transcript: Kevin Choi, Chief Executive Officer
16.4. Arterys
16.4.1. Company Overview
16.4.2. Interview Transcript: Babak Rasolzadeh, Former Vice President of Product and Software Development
16.5. AlgoSurg
16.5.1. Company Overview
16.5.2. Interview Transcript: Vikas Karade, Founder, Chief Executive Officer
16.6. ContextVision
16.6.1. Company Overview
16.6.2. Interview Transcript: Walter de Back, Former Research Scientist
16.7. Advenio Technosys
16.7.1. Company Overview
16.7.2. Interview Transcript: Mausumi Acharya, Chief Executive Officer
16.8. Arterys
16.8.1. Company Overview
16.8.2. Interview Transcript: Carla Leibowitz, Head of Strategy and Marketing
16.9. Arya.ai
16.9.1. Company Overview
16.9.2. Interview Transcript: Deekshith Marla, Chief Technical Officer and Sanjay Bhadra, Chief Operational Officer
17. APPENDIX 1: TABULATED DATA
18. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS

 

ページTOPに戻る


 

Summary

The deep learning market is expected to reach USD 34.5 billion in 2023 anticipated to grow at a CAGR of 21.9% during the forecast period 2023-2035.

Owing to the evaluation of computing devices from the mid-twentieth century onwards has transcended their initial purpose of basic calculations, leading to the emergence of artificial intelligence (AI). This field has empowered machines to comprehend data and perform tasks beyond traditional programming. At the core of AI lies machine learning, enabling computers to learn and adapt without explicit programming. Within machine learning, deep learning stands out as a sophisticated subset that employs multi-layered neural networks to interpret vast amounts of unstructured data, yielding valuable insights, particularly in big data analysis.
In the life sciences, especially in domains such as drug discovery and diagnostics, deep learning's application has stemmed from its ability to mimic the human brain. Diagnostics, within the healthcare sector, notably benefit from the capabilities of deep learning. Addressing challenges encountered in drug discovery, like high attrition rates and financial burdens, deep learning has significantly boosted productivity in this field. Recent advancements in deep learning techniques have broadened its applications in medical imaging, molecular profiling, virtual screening, and comprehensive data analysis.
Fueled by ongoing innovation, the deep learning market in healthcare and drug discovery is poised for substantial growth. The profound impact of computational medicine, combined with continuous advancements in deep learning techniques, foreshadows a promising future for this field, indicating significant market expansion in the forecast period.

Report Coverage
 An executive summary of the key insights captured in our research. It offers a high-level view of the current state of deep learning market and its likely evolution in the mid-to-long term.
 A general overview of big data revolution in the medical industry. It also presents information on artificial intelligence, machine learning, and deep learning algorithms in the healthcare sector. Further, the chapter concludes with a discussion on various applications of deep learning within the healthcare sector.
 Detailed assessment of the overall market landscape of more than 70 companies offering deep learning technologies and services for the purpose of drug discovery, based on several relevant parameters, such as year of establishment, company size, location of headquarters, application area, focus area, therapeutic area, operational model, along with information on the company’s service and product centric models.
 Elaborate profiles of key players developing technologies and offering services related to deep learning, specifically for drug discovery and diagnostics, located across North America, Europe and Asia Pacific (shortlisted based on a proprietary criterion). Each profile includes a brief overview of the company, along with details related to its financial information (wherever available), service portfolio, recent developments and an informed future outlook.
 A qualitative analysis, highlighting the five competitive forces prevalent in this domain, including threats for new entrants, bargaining power of companies using deep learning-based drug discovery and diagnostics, bargaining power of drug developers, threats of substitute technologies and rivalry among existing competitors.
 A detailed analysis of over 420 completed and ongoing clinical trials, based on several relevant parameters, such as trial registration year, trial status, patient enrollment, type of sponsor / collaborator, therapeutic area, trial focus area, study design, and geography. In addition, the chapter highlights the most active industry and non-industry players (in terms of number of clinical trials conducted).
 A detailed analysis of various investments made by players engaged in this domain, during the period 2019-2022, based on several relevant parameters, such as year of funding, amount invested, type of funding (seed financing, venture capital financing, IPOs, secondary offerings, debt financing, grants, and other offerings), focus area, therapeutic area, and geography. In addition, the chapter highlights the most active players (in terms of number of funding instances and amount invested) and key investors (in terms of number of funding instances).
 An analysis of the start-ups / small players (established post 2015, with less than 50 employees) engaged in the deep learning market focused on drug discovery and diagnostics. The chapter includes information on several relevant parameters, such as focus area, therapeutic area, operational model, compatible device, type of offering and start-up health indexing.
 A valuation analysis of companies that are involved in the deep learning-based drug discovery and diagnostics market, based on our proprietary, multi-variable dependent valuation model to estimate the current valuation / net worth of industry players.
 An insightful market forecast and opportunity analysis, highlighting the future growth potential of the deep learning in drug discovery market till the year 2035. In order to provide details on the future opportunity, our projections have been segmented based on therapeutic area (oncological disorders, infectious diseases, neurological disorders, immunological disorders, endocrine disorders, cardiovascular disorders, respiratory disorders and other disorders) and key geographical regions (North America, Europe, Asia Pacific and Rest of the World). Further, the chapter includes estimates of the likely cost saving potential of deploying deep learning technologies for drug discovery.
 An insightful market forecast and opportunity analysis, highlighting the future growth of the deep learning in diagnostics market till the year 2035. In order to provide details on the future opportunity, our projections have been segmented based on therapeutic area (oncological disorders, cardiovascular disorders, neurological disorders, endocrine disorders, respiratory disorders, ophthalmic disorders, infectious diseases, musculoskeletal disorders, inflammatory disorders and other disorders) and key geographical regions (North America, Europe, Asia Pacific and Rest of the World). Further, the chapter includes estimates of the likely cost saving potential of deploying deep learning technologies for diagnostics.
 The opinions expressed by selected key opinion leaders on the applications and challenges associated with deep learning in the healthcare sector. The chapter provides key takeaways from presentations and videos of these experts, highlighting the future opportunity for these models within the healthcare industry.

Key Market Companies
 Aegicare
 Aiforia Technologies
 Ardigen
 Berg
 Google
 Huawei
 Merative
 Nference
 Nvidia
 Owkin
 Phenomic AI
 Pixel AI



ページTOPに戻る


Table of Contents

1. PREFACE
1.1. Introduction
1.2. Key Market Insights
1.3. Scope of the Report
1.4. Research Methodology
1.5. Frequently Asked Questions
1.6. Chapter Outlines
2. EXECUTIVE SUMMARY
3. INTRODUCTION
3.1. Humans, Machines and Intelligence
3.2. The Science of Learning
3.2.1. Teaching Machines
3.2.1.1. Machines for Computing
3.2.1.2. Artificial Intelligence
3.3. The Big Data Revolution
3.3.1. Overview of Big Data
3.3.2. Role of Internet of Things (IoT)
3.3.3. Key Application Areas of Big Data
3.3.3.1. Big Data Analytics in Healthcare
3.3.3.2. Machine Learning
3.3.3.3. Deep Learning
3.4. Deep Learning in Healthcare
3.4.1. Personalized Medicine
3.4.2. Lifestyle Management
3.4.3. Drug Discovery
3.4.4. Clinical Trial Management
3.4.5. Diagnostics
3.5. Concluding Remarks
4. MARKET OVERVIEW: DEEP LEARNING IN DRUG DISCOVERY
4.1. Chapter Overview
4.2. Deep Learning in Drug Discovery: Overall Market Landscape of Service / Technology Providers
4.2.1. Analysis by Year of Establishment
4.2.2. Analysis by Company Size
4.2.3. Analysis by Location of Headquarters
4.2.4. Analysis by Application Area
4.2.5. Analysis by Focus Area
4.2.6. Analysis by Therapeutic Area
4.2.7. Analysis by Operational Model
4.2.7.1. Analysis by Service Centric Model
4.2.7.2. Analysis by Product Centric Model
5. MARKET OVERVIEW: DEEP LEARNING IN DIAGNOSTICS
5.1. Chapter Overview
5.2. Deep Learning in Diagnostics: Overall Market Landscape of Service / Technology Providers
5.2.1. Analysis by Year of Establishment
5.2.2. Analysis by Company Size
5.2.3. Analysis by Location of Headquarters
5.2.4. Analysis by Application Area
5.2.5. Analysis by Focus Area
5.2.6. Analysis by Therapeutic Area
5.2.7. Analysis by Type of Offering / Solution
5.2.8. Analysis by Compatible Device
6. COMPANY PROFILES
6.1. Chapter Overview
6.2. Aegicare
6.2.1. Company Overview
6.2.2. Service Portfolio
6.2.3. Recent Developments and Future Outlook
6.3. Aiforia Technologies
6.3.1. Company Overview
6.3.2. Financial Information
6.3.3. Service Portfolio
6.3.4. Recent Developments and Future Outlook
6.4. Ardigen
6.4.1. Company Overview
6.4.2. Financial Information
6.4.3. Service Portfolio
6.4.4. Recent Developments and Future Outlook
6.5. Berg
6.5.1. Company Overview
6.5.2. Service Portfolio
6.5.3. Recent Developments and Future Outlook
6.6. Google
6.6.1. Company Overview
6.6.2. Financial Information
6.6.3. Service Portfolio
6.6.4. Recent Developments and Future Outlook
6.7. Huawei
6.7.1. Company Overview
6.7.2. Financial Information
6.7.3. Service Portfolio
6.7.4. Recent Developments and Future Outlook
6.8. Merative
6.8.1. Company Overview
6.8.2. Service Portfolio
6.8.3. Recent Developments and Future Outlook
6.9. Nference
6.9.1. Company Overview
6.9.2. Service Portfolio
6.9.3. Recent Developments and Future Outlook
6.10. Nvidia
6.10.1. Company Overview
6.10.2. Financial Information
6.10.3. Service Portfolio
6.10.4. Recent Developments and Future Outlook
6.11. Owkin
6.11.1. Company Overview
6.11.2. Service Portfolio
6.11.3. Recent Developments and Future Outlook
6.12. Phenomic AI
6.12.1. Company Overview
6.12.2. Service Portfolio
6.12.3. Recent Developments and Future Outlook
6.13. Pixel AI
6.13.1. Company Overview
6.13.2. Service Portfolio
6.13.3. Recent Developments and Future Outlook
7. PORTER’S FIVE FORCES ANALYSIS
7.1. Chapter Overview
7.2. Methodology and Assumptions
7.3. Key Parameters
7.3.1. Threats of New Entrants
7.3.2. Bargaining Power of Companies Using Deep Learning for Drug Discovery and Diagnostics
7.3.3. Bargaining Power of Drug Developers
7.3.4. Threats of Substitute Technologies
7.3.5. Rivalry Among Existing Competitors
7.4. Concluding Remarks
8. CLINICAL TRIAL ANALYSIS
8.1. Chapter Overview
8.2. Scope and Methodology
8.3 Deep Learning Market: Clinical Trial Analysis
8.3.1. Analysis by Trial Registration Year
8.3.2. Analysis by Trial Status
8.3.3. Analysis by Trial Registration Year and Patient Enrollment
8.3.4. Analysis by Trial Registration Year and Trial Status
8.3.5. Analysis by Type of Sponsor / Collaborator
8.3.6. Analysis by Therapeutic Area
8.3.7. Word Cloud: Trial Focus Area
8.3.8. Analysis by Study Design
8.3.9. Geographical Analysis by Number of Clinical Trials
8.3.10. Geographical Analysis by Trial Registration Year and Patient Population
8.3.11. Leading Organizations: Analysis by Number of Registered Trials
9. FUNDING AND INVESTMENT ANALYSIS
9.1. Chapter Overview
9.2. Types of Funding
9.3. Deep Learning Market: Funding and Investment Analysis
9.3.1. Analysis by Year of Funding
9.3.2. Analysis by Amount Invested
9.3.3. Analysis by Type of Funding
9.3.4. Analysis by Year and Type of Funding
9.3.5. Analysis by Focus Areas
9.3.6. Analysis by Therapeutic Area
9.3.7. Analysis by Geography
9.3.8. Most Active Players: Analysis by Number of Funding Instances
9.3.9. Most Active Players: Analysis by Amount Invested
9.3.10. Most Active Investors: Analysis by Number of Funding Instances
10. START-UP HEALTH INDEXING
10.1. Chapter Overview
10.2. Start-ups Focused on Deep Learning in Drug Discovery
10.2.1. Methodology and Key Parameters
10.2.2. Analysis by Location of Headquarters
10.3. Benchmarking Analysis of Start-ups Focused on Deep Learning in Drug Discovery
10.3.1. Analysis by Focus Area
10.3.2. Analysis by Therapeutic Area
10.3.3. Analysis by Operational Model
10.3.4. Start-up Health Indexing: Roots Analysis Perspective
10.4. Start-ups Focused on Deep Learning in Diagnostics
10.4.1. Methodology and Key Parameters
10.4.2. Analysis by Location of Headquarters
10.5. Benchmarking Analysis of Start-ups Focused on Deep Learning in Diagnostics
10.5.1. Analysis by Focus Area
10.5.2. Analysis by Therapeutic Area
10.5.3. Analysis by Compatible Device
10.5.4. Analysis by Type of Offering
10.5.5. Start-up Health Indexing: Roots Analysis Perspective
11. COMPANY VALUATION ANALYSIS
11.1. Chapter Overview
11.2. Company Valuation Analysis: Key Parameters
11.3. Methodology
11.4. Company Valuation Analysis: Roots Analysis Proprietary Scores
12. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DRUG DISCOVERY
12.1. Chapter Overview
12.2. Forecast Methodology
12.3. Key Assumptions
12.4. Overall Deep Learning in Drug Discovery Market, 2023-2035
12.4.1. Deep Learning in Drug Discovery Market: Analysis by Target Therapeutic Area, 2023-2035
12.4.1.1. Deep Learning in Drug Discovery Market for Oncological Disorders, 2023-2035
12.4.1.2. Deep Learning in Drug Discovery Market for Infectious Diseases, 2023-2035
12.4.1.3. Deep Learning in Drug Discovery Market for Neurological Disorders, 2023-2035
12.4.1.4. Deep Learning in Drug Discovery Market for Immunological Disorders, 2023-2035
12.4.1.5. Deep Learning in Drug Discovery Market for Endocrine Disorders, 2023-2035
12.4.1.6. Deep Learning in Drug Discovery Market for Cardiovascular Disorders, 2023-2035
12.4.1.7. Deep Learning in Drug Discovery Market for Respiratory Disorders, 2023-2035
12.4.1.8. Deep Learning in Drug Discovery Market for Other Disorders, 2023-2035
12.4.2. Deep Learning in Drug Discovery Market: Analysis by Geography, 2023-2035
12.4.2.1. Deep Learning in Drug Discovery Market in North America, 2023-2035
12.4.2.1.1. Deep Learning in Drug Discovery Market in the US, 2023-2035
12.4.2.1.2. Deep Learning in Drug Discovery Market in Canada, 2023-2035
12.4.2.2. Deep Learning in Drug Discovery Market in Europe, 2023-2035
12.4.2.2.1. Deep Learning in Drug Discovery Market in the UK, 2023-2035
12.4.2.2.2. Deep Learning in Drug Discovery Market in France, 2023-2035
12.4.2.2.3. Deep Learning in Drug Discovery Market in Germany, 2023-2035
12.4.2.2.4. Deep Learning in Drug Discovery Market in Spain, 2023-2035
12.4.2.2.5. Deep Learning in Drug Discovery Market in Italy, 2023-2035
12.4.2.2.6. Deep Learning in Drug Discovery Market in Rest of Europe, 2023-2035
12.4.2.3. Deep Learning in Drug Discovery Market in Asia Pacific, 2023-2035
12.4.2.3.1. Deep Learning in Drug Discovery Market in China, 2023-2035
12.4.2.3.2. Deep Learning in Drug Discovery Market in India, 2023-2035
12.4.2.3.3. Deep Learning in Drug Discovery Market in Japan, 2023-2035
12.4.2.3.4. Deep Learning in Drug Discovery Market in Australia, 2023-2035
12.4.2.3.5. Deep Learning in Drug Discovery Market in South Korea, 2023-2035
12.4.2.4. Deep Learning in Drug Discovery Market in Rest of the World, 2023-2035
12.5. Deep Learning in Drug Discovery Market: Cost Saving Potential
12.5.1. Key Assumptions and Methodology
12.5.2. Deep Learning in Drug Discovery Market: Overall Cost Saving Potential, 2023-2035
13. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DIAGNOSTICS
13.1. Chapter Overview
13.2. Forecast Methodology
13.3. Key Assumptions
13.4. Overall Deep Learning in Diagnostics Market, 2023-2035
13.4.1. Deep Learning in Diagnostics Market: Analysis by Target Therapeutic Area, 2023-2035
13.4.1.1. Deep Learning in Diagnostics Market for Oncological Disorders, 2023-2035
13.4.1.2. Deep Learning in Diagnostics Market for Cardiovascular Disorders, 2023-2035
13.4.1.3. Deep Learning in Diagnostics Market for Neurological Disorders, 2023-2035
13.4.1.4. Deep Learning in Diagnostics Market for Endocrine Disorders, 2023-2035
13.4.1.5. Deep Learning in Diagnostics Market for Respiratory Disorders, 2023-2035
13.4.1.6. Deep Learning in Diagnostics Market for Ophthalmic Disorders, 2023-2035
13.4.1.7. Deep Learning in Diagnostics Market for Infectious Diseases, 2023-2035
13.4.1.8. Deep Learning in Diagnostics Market for Musculoskeletal Disorders, 2023-2035
13.4.1.9. Deep Learning in Diagnostics Market for Inflammatory Disorders, 2023-2035
13.4.1.10. Deep Learning in Diagnostics Market for Other Disorders, 2023-2035
13.4.2. Deep Learning in Diagnostics Market: Analysis by Geography, 2023-2035
13.4.2.1. Deep Learning in Diagnostics Market in North America, 2023-2035
13.4.2.2. Deep Learning in Diagnostics Market in Europe, 2023-2035
13.4.2.3. Deep Learning in Diagnostics Market in Asia Pacific, 2023-2035
13.4.2.4. Deep Learning in Diagnostics Market in Rest of the World, 2023-2035
13.5. Deep Learning in Diagnostics Market: Cost Saving Potential
13.5.1. Key Assumptions and Methodology
13.5.2. Deep Learning in Diagnostics Market: Overall Cost Saving Potential, 2023-2035
14. DEEP LEARNING IN HEALTHCARE: EXPERT INSIGHTS
14.1. Chapter Overview
14.2. Sean Lane, Chief Executive Officer (Olive)
14.3. Junaid Kalia, Founder (NeuroCare.AI) and Adeel Memon, Assistant Professor, Neurology Specialist (West Virginia University Hospitals)
14.4. David Reich, President / Chief Operating Officer (The Mount Sinai Hospital) and Robbie Freeman, Vice President of Clinical Innovation (The Mount Sinai Hospital)
14.5. Elad Benjamin, Vice President, Business Leader Clinical Data Services (Philips) and Jonathan Laserson, Senior Deep Learning Researcher (Apple)
14.6. Kevin Lyman, Founder and Chief Science Officer (Enlitic)
15. CONCLUDING REMARKS
16. INTERVIEW TRANSCRIPTS
16.1. Chapter Overview
16.2. Nucleai
16.2.1. Company Overview
16.2.2. Interview Transcript: Avi Veidman, Chief Executive Officer and Emily Salerno, Commercial Strategy and Operations Lead
16.3. Mediwhale
16.3.1. Company Overview
16.3.2. Interview Transcript: Kevin Choi, Chief Executive Officer
16.4. Arterys
16.4.1. Company Overview
16.4.2. Interview Transcript: Babak Rasolzadeh, Former Vice President of Product and Software Development
16.5. AlgoSurg
16.5.1. Company Overview
16.5.2. Interview Transcript: Vikas Karade, Founder, Chief Executive Officer
16.6. ContextVision
16.6.1. Company Overview
16.6.2. Interview Transcript: Walter de Back, Former Research Scientist
16.7. Advenio Technosys
16.7.1. Company Overview
16.7.2. Interview Transcript: Mausumi Acharya, Chief Executive Officer
16.8. Arterys
16.8.1. Company Overview
16.8.2. Interview Transcript: Carla Leibowitz, Head of Strategy and Marketing
16.9. Arya.ai
16.9.1. Company Overview
16.9.2. Interview Transcript: Deekshith Marla, Chief Technical Officer and Sanjay Bhadra, Chief Operational Officer
17. APPENDIX 1: TABULATED DATA
18. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野の最新刊レポート

  • 本レポートと同分野の最新刊レポートはありません。

Roots Analysis社の分野での最新刊レポート

  • 最新刊レポートはありません。

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


Roots Analysis社はどのような調査会社ですか?


Roots Analysisは2013年設立の医薬品・医療機器が専門の調査会社です。 医薬品の製造委託や創薬のデジタル化など、最新の医薬業界の分析を行っています。 もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/22 10:26

155.52 円

163.34 円

198.56 円

ページTOPに戻る