創薬におけるディープラーニング市場と診断におけるディープラーニング市場(第2版)、2023-2035年:治療領域別(腫瘍疾患、感染症、神経疾患、免疫疾患、内分泌疾患、心血管疾患、呼吸器疾患、眼疾患、筋骨格系疾患、炎症性疾患、その他の疾患)および主要地域別(北米、欧州、アジア太平洋地域、その他の地域)の分布:産業動向と世界予測、2023-2035年Deep Learning in Drug Discovery Market and Deep Learning in Diagnostics Market (2nd Edition), 2023-2035: Distribution by Therapeutic Area (Oncological Disorders, Infectious Diseases, Neurological Disorders, Immunological Disorders, Endocrine Disorders, Cardiovascular Disorders, Respiratory Disorders, Eye Disorders, Musculoskeletal Disorders, Inflammatory Disorders and Other Disorders) and Key Geographical Regions (North America, Europe, Asia Pacific and Rest of the World): Industry Trends and Global Forecasts, 2023-2035 ディープラーニング市場は2023年に345億ドルに達すると予測され、2023年から2035年の予測期間中に年平均成長率21.9%で成長すると予測されている。 20世紀半ば以降のコンピューティングデバイスの評価は、基本... もっと見る
サマリーディープラーニング市場は2023年に345億ドルに達すると予測され、2023年から2035年の予測期間中に年平均成長率21.9%で成長すると予測されている。20世紀半ば以降のコンピューティングデバイスの評価は、基本的な計算という当初の目的を超え、人工知能(AI)の出現につながった。この分野では、機械がデータを理解し、従来のプログラミングを超えるタスクを実行する力を持つようになった。AIの中核には機械学習があり、明示的なプログラミングなしにコンピューターが学習し適応することを可能にしている。機械学習の中でもディープラーニングは、特にビッグデータ分析において、膨大な量の非構造化データを解釈し、貴重な洞察をもたらすために多層ニューラルネットワークを採用する洗練されたサブセットとして際立っている。 ライフサイエンス、特に創薬や診断などの領域では、ディープラーニングの応用は人間の脳を模倣する能力に由来している。ヘルスケア分野における診断学は、特にディープラーニングの能力の恩恵を受けている。高い離職率や経済的負担など、創薬で遭遇する課題に対処するため、ディープラーニングはこの分野の生産性を大幅に向上させた。最近のディープラーニング技術の進歩により、医療画像、分子プロファイリング、仮想スクリーニング、包括的なデータ分析など、その応用範囲は広がっている。 継続的な技術革新に後押しされ、医療と創薬におけるディープラーニング市場は大幅な成長を遂げようとしている。ディープラーニング技術の継続的な進歩と組み合わされた計算医学の多大な影響は、この分野の有望な将来を予感させ、予測期間における市場の大幅な拡大を示している。 レポート範囲 調査で得られた重要な洞察をまとめたエグゼクティブサマリー。ディープラーニング市場の現状と中長期的に予想される進化についてハイレベルな見解を提供しています。 医療業界におけるビッグデータ革命の概要。また、医療分野における人工知能、機械学習、ディープラーニング・アルゴリズムに関する情報も紹介している。さらに、本章の締めくくりとして、医療分野におけるディープラーニングの様々な応用について考察している。 創薬目的でディープラーニング技術やサービスを提供する70社以上の企業について、設立年、企業規模、本社所在地、応用分野、重点領域、治療分野、業務モデルなどの関連パラメータに加え、企業のサービスや製品中心モデルに関する情報を基に、市場全体の状況を詳細に評価。 北米、欧州、アジア太平洋地域に所在し、特に創薬と診断のためのディープラーニングに関連する技術を開発し、サービスを提供する主要企業の詳細なプロフィール(独自の基準に基づいてショートリスト化)。各プロフィールには、財務情報(入手可能な場合)、サービス・ポートフォリオ、最近の開発状況、将来の見通しに関する詳細とともに、企業の簡単な概要が記載されています。 新規参入企業の脅威、ディープラーニングに基づく創薬・診断法を利用する企業の交渉力、医薬品開発企業の交渉力、代替技術の脅威、既存競合企業間の競争など、この領域で普及している5つの競争力に焦点を当てた定性的分析。 治験登録年、治験状況、患者登録数、スポンサー/共同研究者のタイプ、治療領域、試験重点領域、試験デザイン、地域など、複数の関連パラメータに基づき、完了済みおよび進行中の420以上の臨床試験を詳細に分析。さらに、本章では、最も活発な業界および非業界のプレーヤー(実施された臨床試験の数で)を紹介している。 資金調達年、投資額、資金調達の種類(シードファイナンス、ベンチャーキャピタルファイナンス、IPO、セカンダリーオファリング、デットファイナンス、助成金、その他のオファリング)、重点領域、治療領域、地域など、いくつかの関連パラメータに基づいて、この領域に従事するプレーヤーが2019年から2022年の間に行った様々な投資の詳細な分析。さらに、本章では、最も活発なプレーヤー(資金調達事例数、投資額)、主要投資家(資金調達事例数)を紹介している。 創薬・診断に特化したディープラーニング市場に従事する新興企業/小規模プレイヤー(2015年以降設立、従業員50人未満)の分析。本章では、注力分野、治療分野、事業モデル、対応デバイス、提供タイプ、新興企業の健康指標など、いくつかの関連パラメータに関する情報を掲載している。 ディープラーニングに基づく創薬・診断市場に関わる企業のバリュエーション分析。当社独自の多変数依存バリュエーションモデルに基づき、業界プレイヤーの現在のバリュエーション/純資産を推定。 洞察に満ちた市場予測と機会分析により、2035年までのディープラーニングによる創薬市場の将来成長の可能性を浮き彫りにする。将来の機会に関する詳細を提供するため、当社の予測は治療分野(腫瘍疾患、感染症、神経疾患、免疫疾患、内分泌疾患、心血管疾患、呼吸器疾患、その他の疾患)および主要地域(北米、欧州、アジア太平洋地域、その他の地域)に基づいてセグメント化されています。さらに、本章には、創薬にディープラーニング技術を導入することによるコスト削減の可能性の推定値も含まれている。 洞察に満ちた市場予測と機会分析で、2035年までの診断におけるディープラーニング市場の将来成長を強調する。将来の機会に関する詳細を提供するために、我々の予測は治療分野(腫瘍疾患、心血管疾患、神経疾患、内分泌疾患、呼吸器疾患、眼科疾患、感染症、筋骨格系疾患、炎症性疾患、その他の疾患)および主要地域(北米、欧州、アジア太平洋地域、その他の地域)に基づいてセグメント化されています。さらに本章では、診断にディープラーニング技術を導入することによるコスト削減の可能性の推定も行っている。 ヘルスケア分野におけるディープラーニングの応用と課題に関して、選ばれた主要オピニオンリーダーが表明した意見。この章では、これらの専門家によるプレゼンテーションやビデオからの重要なポイントを提供し、ヘルスケア業界におけるこれらのモデルの将来的な機会を強調している。 主要市場企業 Aegicare アイフォリア・テクノロジーズ アルディゲン ベルク グーグル ファーウェイ メラティブ Nference エヌビディア オウキン Phenomic AI ピクセルAI 目次1. PREFACE1.1. Introduction 1.2. Key Market Insights 1.3. Scope of the Report 1.4. Research Methodology 1.5. Frequently Asked Questions 1.6. Chapter Outlines 2. EXECUTIVE SUMMARY 3. INTRODUCTION 3.1. Humans, Machines and Intelligence 3.2. The Science of Learning 3.2.1. Teaching Machines 3.2.1.1. Machines for Computing 3.2.1.2. Artificial Intelligence 3.3. The Big Data Revolution 3.3.1. Overview of Big Data 3.3.2. Role of Internet of Things (IoT) 3.3.3. Key Application Areas of Big Data 3.3.3.1. Big Data Analytics in Healthcare 3.3.3.2. Machine Learning 3.3.3.3. Deep Learning 3.4. Deep Learning in Healthcare 3.4.1. Personalized Medicine 3.4.2. Lifestyle Management 3.4.3. Drug Discovery 3.4.4. Clinical Trial Management 3.4.5. Diagnostics 3.5. Concluding Remarks 4. MARKET OVERVIEW: DEEP LEARNING IN DRUG DISCOVERY 4.1. Chapter Overview 4.2. Deep Learning in Drug Discovery: Overall Market Landscape of Service / Technology Providers 4.2.1. Analysis by Year of Establishment 4.2.2. Analysis by Company Size 4.2.3. Analysis by Location of Headquarters 4.2.4. Analysis by Application Area 4.2.5. Analysis by Focus Area 4.2.6. Analysis by Therapeutic Area 4.2.7. Analysis by Operational Model 4.2.7.1. Analysis by Service Centric Model 4.2.7.2. Analysis by Product Centric Model 5. MARKET OVERVIEW: DEEP LEARNING IN DIAGNOSTICS 5.1. Chapter Overview 5.2. Deep Learning in Diagnostics: Overall Market Landscape of Service / Technology Providers 5.2.1. Analysis by Year of Establishment 5.2.2. Analysis by Company Size 5.2.3. Analysis by Location of Headquarters 5.2.4. Analysis by Application Area 5.2.5. Analysis by Focus Area 5.2.6. Analysis by Therapeutic Area 5.2.7. Analysis by Type of Offering / Solution 5.2.8. Analysis by Compatible Device 6. COMPANY PROFILES 6.1. Chapter Overview 6.2. Aegicare 6.2.1. Company Overview 6.2.2. Service Portfolio 6.2.3. Recent Developments and Future Outlook 6.3. Aiforia Technologies 6.3.1. Company Overview 6.3.2. Financial Information 6.3.3. Service Portfolio 6.3.4. Recent Developments and Future Outlook 6.4. Ardigen 6.4.1. Company Overview 6.4.2. Financial Information 6.4.3. Service Portfolio 6.4.4. Recent Developments and Future Outlook 6.5. Berg 6.5.1. Company Overview 6.5.2. Service Portfolio 6.5.3. Recent Developments and Future Outlook 6.6. Google 6.6.1. Company Overview 6.6.2. Financial Information 6.6.3. Service Portfolio 6.6.4. Recent Developments and Future Outlook 6.7. Huawei 6.7.1. Company Overview 6.7.2. Financial Information 6.7.3. Service Portfolio 6.7.4. Recent Developments and Future Outlook 6.8. Merative 6.8.1. Company Overview 6.8.2. Service Portfolio 6.8.3. Recent Developments and Future Outlook 6.9. Nference 6.9.1. Company Overview 6.9.2. Service Portfolio 6.9.3. Recent Developments and Future Outlook 6.10. Nvidia 6.10.1. Company Overview 6.10.2. Financial Information 6.10.3. Service Portfolio 6.10.4. Recent Developments and Future Outlook 6.11. Owkin 6.11.1. Company Overview 6.11.2. Service Portfolio 6.11.3. Recent Developments and Future Outlook 6.12. Phenomic AI 6.12.1. Company Overview 6.12.2. Service Portfolio 6.12.3. Recent Developments and Future Outlook 6.13. Pixel AI 6.13.1. Company Overview 6.13.2. Service Portfolio 6.13.3. Recent Developments and Future Outlook 7. PORTER’S FIVE FORCES ANALYSIS 7.1. Chapter Overview 7.2. Methodology and Assumptions 7.3. Key Parameters 7.3.1. Threats of New Entrants 7.3.2. Bargaining Power of Companies Using Deep Learning for Drug Discovery and Diagnostics 7.3.3. Bargaining Power of Drug Developers 7.3.4. Threats of Substitute Technologies 7.3.5. Rivalry Among Existing Competitors 7.4. Concluding Remarks 8. CLINICAL TRIAL ANALYSIS 8.1. Chapter Overview 8.2. Scope and Methodology 8.3 Deep Learning Market: Clinical Trial Analysis 8.3.1. Analysis by Trial Registration Year 8.3.2. Analysis by Trial Status 8.3.3. Analysis by Trial Registration Year and Patient Enrollment 8.3.4. Analysis by Trial Registration Year and Trial Status 8.3.5. Analysis by Type of Sponsor / Collaborator 8.3.6. Analysis by Therapeutic Area 8.3.7. Word Cloud: Trial Focus Area 8.3.8. Analysis by Study Design 8.3.9. Geographical Analysis by Number of Clinical Trials 8.3.10. Geographical Analysis by Trial Registration Year and Patient Population 8.3.11. Leading Organizations: Analysis by Number of Registered Trials 9. FUNDING AND INVESTMENT ANALYSIS 9.1. Chapter Overview 9.2. Types of Funding 9.3. Deep Learning Market: Funding and Investment Analysis 9.3.1. Analysis by Year of Funding 9.3.2. Analysis by Amount Invested 9.3.3. Analysis by Type of Funding 9.3.4. Analysis by Year and Type of Funding 9.3.5. Analysis by Focus Areas 9.3.6. Analysis by Therapeutic Area 9.3.7. Analysis by Geography 9.3.8. Most Active Players: Analysis by Number of Funding Instances 9.3.9. Most Active Players: Analysis by Amount Invested 9.3.10. Most Active Investors: Analysis by Number of Funding Instances 10. START-UP HEALTH INDEXING 10.1. Chapter Overview 10.2. Start-ups Focused on Deep Learning in Drug Discovery 10.2.1. Methodology and Key Parameters 10.2.2. Analysis by Location of Headquarters 10.3. Benchmarking Analysis of Start-ups Focused on Deep Learning in Drug Discovery 10.3.1. Analysis by Focus Area 10.3.2. Analysis by Therapeutic Area 10.3.3. Analysis by Operational Model 10.3.4. Start-up Health Indexing: Roots Analysis Perspective 10.4. Start-ups Focused on Deep Learning in Diagnostics 10.4.1. Methodology and Key Parameters 10.4.2. Analysis by Location of Headquarters 10.5. Benchmarking Analysis of Start-ups Focused on Deep Learning in Diagnostics 10.5.1. Analysis by Focus Area 10.5.2. Analysis by Therapeutic Area 10.5.3. Analysis by Compatible Device 10.5.4. Analysis by Type of Offering 10.5.5. Start-up Health Indexing: Roots Analysis Perspective 11. COMPANY VALUATION ANALYSIS 11.1. Chapter Overview 11.2. Company Valuation Analysis: Key Parameters 11.3. Methodology 11.4. Company Valuation Analysis: Roots Analysis Proprietary Scores 12. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DRUG DISCOVERY 12.1. Chapter Overview 12.2. Forecast Methodology 12.3. Key Assumptions 12.4. Overall Deep Learning in Drug Discovery Market, 2023-2035 12.4.1. Deep Learning in Drug Discovery Market: Analysis by Target Therapeutic Area, 2023-2035 12.4.1.1. Deep Learning in Drug Discovery Market for Oncological Disorders, 2023-2035 12.4.1.2. Deep Learning in Drug Discovery Market for Infectious Diseases, 2023-2035 12.4.1.3. Deep Learning in Drug Discovery Market for Neurological Disorders, 2023-2035 12.4.1.4. Deep Learning in Drug Discovery Market for Immunological Disorders, 2023-2035 12.4.1.5. Deep Learning in Drug Discovery Market for Endocrine Disorders, 2023-2035 12.4.1.6. Deep Learning in Drug Discovery Market for Cardiovascular Disorders, 2023-2035 12.4.1.7. Deep Learning in Drug Discovery Market for Respiratory Disorders, 2023-2035 12.4.1.8. Deep Learning in Drug Discovery Market for Other Disorders, 2023-2035 12.4.2. Deep Learning in Drug Discovery Market: Analysis by Geography, 2023-2035 12.4.2.1. Deep Learning in Drug Discovery Market in North America, 2023-2035 12.4.2.1.1. Deep Learning in Drug Discovery Market in the US, 2023-2035 12.4.2.1.2. Deep Learning in Drug Discovery Market in Canada, 2023-2035 12.4.2.2. Deep Learning in Drug Discovery Market in Europe, 2023-2035 12.4.2.2.1. Deep Learning in Drug Discovery Market in the UK, 2023-2035 12.4.2.2.2. Deep Learning in Drug Discovery Market in France, 2023-2035 12.4.2.2.3. Deep Learning in Drug Discovery Market in Germany, 2023-2035 12.4.2.2.4. Deep Learning in Drug Discovery Market in Spain, 2023-2035 12.4.2.2.5. Deep Learning in Drug Discovery Market in Italy, 2023-2035 12.4.2.2.6. Deep Learning in Drug Discovery Market in Rest of Europe, 2023-2035 12.4.2.3. Deep Learning in Drug Discovery Market in Asia Pacific, 2023-2035 12.4.2.3.1. Deep Learning in Drug Discovery Market in China, 2023-2035 12.4.2.3.2. Deep Learning in Drug Discovery Market in India, 2023-2035 12.4.2.3.3. Deep Learning in Drug Discovery Market in Japan, 2023-2035 12.4.2.3.4. Deep Learning in Drug Discovery Market in Australia, 2023-2035 12.4.2.3.5. Deep Learning in Drug Discovery Market in South Korea, 2023-2035 12.4.2.4. Deep Learning in Drug Discovery Market in Rest of the World, 2023-2035 12.5. Deep Learning in Drug Discovery Market: Cost Saving Potential 12.5.1. Key Assumptions and Methodology 12.5.2. Deep Learning in Drug Discovery Market: Overall Cost Saving Potential, 2023-2035 13. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DIAGNOSTICS 13.1. Chapter Overview 13.2. Forecast Methodology 13.3. Key Assumptions 13.4. Overall Deep Learning in Diagnostics Market, 2023-2035 13.4.1. Deep Learning in Diagnostics Market: Analysis by Target Therapeutic Area, 2023-2035 13.4.1.1. Deep Learning in Diagnostics Market for Oncological Disorders, 2023-2035 13.4.1.2. Deep Learning in Diagnostics Market for Cardiovascular Disorders, 2023-2035 13.4.1.3. Deep Learning in Diagnostics Market for Neurological Disorders, 2023-2035 13.4.1.4. Deep Learning in Diagnostics Market for Endocrine Disorders, 2023-2035 13.4.1.5. Deep Learning in Diagnostics Market for Respiratory Disorders, 2023-2035 13.4.1.6. Deep Learning in Diagnostics Market for Ophthalmic Disorders, 2023-2035 13.4.1.7. Deep Learning in Diagnostics Market for Infectious Diseases, 2023-2035 13.4.1.8. Deep Learning in Diagnostics Market for Musculoskeletal Disorders, 2023-2035 13.4.1.9. Deep Learning in Diagnostics Market for Inflammatory Disorders, 2023-2035 13.4.1.10. Deep Learning in Diagnostics Market for Other Disorders, 2023-2035 13.4.2. Deep Learning in Diagnostics Market: Analysis by Geography, 2023-2035 13.4.2.1. Deep Learning in Diagnostics Market in North America, 2023-2035 13.4.2.2. Deep Learning in Diagnostics Market in Europe, 2023-2035 13.4.2.3. Deep Learning in Diagnostics Market in Asia Pacific, 2023-2035 13.4.2.4. Deep Learning in Diagnostics Market in Rest of the World, 2023-2035 13.5. Deep Learning in Diagnostics Market: Cost Saving Potential 13.5.1. Key Assumptions and Methodology 13.5.2. Deep Learning in Diagnostics Market: Overall Cost Saving Potential, 2023-2035 14. DEEP LEARNING IN HEALTHCARE: EXPERT INSIGHTS 14.1. Chapter Overview 14.2. Sean Lane, Chief Executive Officer (Olive) 14.3. Junaid Kalia, Founder (NeuroCare.AI) and Adeel Memon, Assistant Professor, Neurology Specialist (West Virginia University Hospitals) 14.4. David Reich, President / Chief Operating Officer (The Mount Sinai Hospital) and Robbie Freeman, Vice President of Clinical Innovation (The Mount Sinai Hospital) 14.5. Elad Benjamin, Vice President, Business Leader Clinical Data Services (Philips) and Jonathan Laserson, Senior Deep Learning Researcher (Apple) 14.6. Kevin Lyman, Founder and Chief Science Officer (Enlitic) 15. CONCLUDING REMARKS 16. INTERVIEW TRANSCRIPTS 16.1. Chapter Overview 16.2. Nucleai 16.2.1. Company Overview 16.2.2. Interview Transcript: Avi Veidman, Chief Executive Officer and Emily Salerno, Commercial Strategy and Operations Lead 16.3. Mediwhale 16.3.1. Company Overview 16.3.2. Interview Transcript: Kevin Choi, Chief Executive Officer 16.4. Arterys 16.4.1. Company Overview 16.4.2. Interview Transcript: Babak Rasolzadeh, Former Vice President of Product and Software Development 16.5. AlgoSurg 16.5.1. Company Overview 16.5.2. Interview Transcript: Vikas Karade, Founder, Chief Executive Officer 16.6. ContextVision 16.6.1. Company Overview 16.6.2. Interview Transcript: Walter de Back, Former Research Scientist 16.7. Advenio Technosys 16.7.1. Company Overview 16.7.2. Interview Transcript: Mausumi Acharya, Chief Executive Officer 16.8. Arterys 16.8.1. Company Overview 16.8.2. Interview Transcript: Carla Leibowitz, Head of Strategy and Marketing 16.9. Arya.ai 16.9.1. Company Overview 16.9.2. Interview Transcript: Deekshith Marla, Chief Technical Officer and Sanjay Bhadra, Chief Operational Officer 17. APPENDIX 1: TABULATED DATA 18. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS
SummaryThe deep learning market is expected to reach USD 34.5 billion in 2023 anticipated to grow at a CAGR of 21.9% during the forecast period 2023-2035. Table of Contents1. PREFACE1.1. Introduction 1.2. Key Market Insights 1.3. Scope of the Report 1.4. Research Methodology 1.5. Frequently Asked Questions 1.6. Chapter Outlines 2. EXECUTIVE SUMMARY 3. INTRODUCTION 3.1. Humans, Machines and Intelligence 3.2. The Science of Learning 3.2.1. Teaching Machines 3.2.1.1. Machines for Computing 3.2.1.2. Artificial Intelligence 3.3. The Big Data Revolution 3.3.1. Overview of Big Data 3.3.2. Role of Internet of Things (IoT) 3.3.3. Key Application Areas of Big Data 3.3.3.1. Big Data Analytics in Healthcare 3.3.3.2. Machine Learning 3.3.3.3. Deep Learning 3.4. Deep Learning in Healthcare 3.4.1. Personalized Medicine 3.4.2. Lifestyle Management 3.4.3. Drug Discovery 3.4.4. Clinical Trial Management 3.4.5. Diagnostics 3.5. Concluding Remarks 4. MARKET OVERVIEW: DEEP LEARNING IN DRUG DISCOVERY 4.1. Chapter Overview 4.2. Deep Learning in Drug Discovery: Overall Market Landscape of Service / Technology Providers 4.2.1. Analysis by Year of Establishment 4.2.2. Analysis by Company Size 4.2.3. Analysis by Location of Headquarters 4.2.4. Analysis by Application Area 4.2.5. Analysis by Focus Area 4.2.6. Analysis by Therapeutic Area 4.2.7. Analysis by Operational Model 4.2.7.1. Analysis by Service Centric Model 4.2.7.2. Analysis by Product Centric Model 5. MARKET OVERVIEW: DEEP LEARNING IN DIAGNOSTICS 5.1. Chapter Overview 5.2. Deep Learning in Diagnostics: Overall Market Landscape of Service / Technology Providers 5.2.1. Analysis by Year of Establishment 5.2.2. Analysis by Company Size 5.2.3. Analysis by Location of Headquarters 5.2.4. Analysis by Application Area 5.2.5. Analysis by Focus Area 5.2.6. Analysis by Therapeutic Area 5.2.7. Analysis by Type of Offering / Solution 5.2.8. Analysis by Compatible Device 6. COMPANY PROFILES 6.1. Chapter Overview 6.2. Aegicare 6.2.1. Company Overview 6.2.2. Service Portfolio 6.2.3. Recent Developments and Future Outlook 6.3. Aiforia Technologies 6.3.1. Company Overview 6.3.2. Financial Information 6.3.3. Service Portfolio 6.3.4. Recent Developments and Future Outlook 6.4. Ardigen 6.4.1. Company Overview 6.4.2. Financial Information 6.4.3. Service Portfolio 6.4.4. Recent Developments and Future Outlook 6.5. Berg 6.5.1. Company Overview 6.5.2. Service Portfolio 6.5.3. Recent Developments and Future Outlook 6.6. Google 6.6.1. Company Overview 6.6.2. Financial Information 6.6.3. Service Portfolio 6.6.4. Recent Developments and Future Outlook 6.7. Huawei 6.7.1. Company Overview 6.7.2. Financial Information 6.7.3. Service Portfolio 6.7.4. Recent Developments and Future Outlook 6.8. Merative 6.8.1. Company Overview 6.8.2. Service Portfolio 6.8.3. Recent Developments and Future Outlook 6.9. Nference 6.9.1. Company Overview 6.9.2. Service Portfolio 6.9.3. Recent Developments and Future Outlook 6.10. Nvidia 6.10.1. Company Overview 6.10.2. Financial Information 6.10.3. Service Portfolio 6.10.4. Recent Developments and Future Outlook 6.11. Owkin 6.11.1. Company Overview 6.11.2. Service Portfolio 6.11.3. Recent Developments and Future Outlook 6.12. Phenomic AI 6.12.1. Company Overview 6.12.2. Service Portfolio 6.12.3. Recent Developments and Future Outlook 6.13. Pixel AI 6.13.1. Company Overview 6.13.2. Service Portfolio 6.13.3. Recent Developments and Future Outlook 7. PORTER’S FIVE FORCES ANALYSIS 7.1. Chapter Overview 7.2. Methodology and Assumptions 7.3. Key Parameters 7.3.1. Threats of New Entrants 7.3.2. Bargaining Power of Companies Using Deep Learning for Drug Discovery and Diagnostics 7.3.3. Bargaining Power of Drug Developers 7.3.4. Threats of Substitute Technologies 7.3.5. Rivalry Among Existing Competitors 7.4. Concluding Remarks 8. CLINICAL TRIAL ANALYSIS 8.1. Chapter Overview 8.2. Scope and Methodology 8.3 Deep Learning Market: Clinical Trial Analysis 8.3.1. Analysis by Trial Registration Year 8.3.2. Analysis by Trial Status 8.3.3. Analysis by Trial Registration Year and Patient Enrollment 8.3.4. Analysis by Trial Registration Year and Trial Status 8.3.5. Analysis by Type of Sponsor / Collaborator 8.3.6. Analysis by Therapeutic Area 8.3.7. Word Cloud: Trial Focus Area 8.3.8. Analysis by Study Design 8.3.9. Geographical Analysis by Number of Clinical Trials 8.3.10. Geographical Analysis by Trial Registration Year and Patient Population 8.3.11. Leading Organizations: Analysis by Number of Registered Trials 9. FUNDING AND INVESTMENT ANALYSIS 9.1. Chapter Overview 9.2. Types of Funding 9.3. Deep Learning Market: Funding and Investment Analysis 9.3.1. Analysis by Year of Funding 9.3.2. Analysis by Amount Invested 9.3.3. Analysis by Type of Funding 9.3.4. Analysis by Year and Type of Funding 9.3.5. Analysis by Focus Areas 9.3.6. Analysis by Therapeutic Area 9.3.7. Analysis by Geography 9.3.8. Most Active Players: Analysis by Number of Funding Instances 9.3.9. Most Active Players: Analysis by Amount Invested 9.3.10. Most Active Investors: Analysis by Number of Funding Instances 10. START-UP HEALTH INDEXING 10.1. Chapter Overview 10.2. Start-ups Focused on Deep Learning in Drug Discovery 10.2.1. Methodology and Key Parameters 10.2.2. Analysis by Location of Headquarters 10.3. Benchmarking Analysis of Start-ups Focused on Deep Learning in Drug Discovery 10.3.1. Analysis by Focus Area 10.3.2. Analysis by Therapeutic Area 10.3.3. Analysis by Operational Model 10.3.4. Start-up Health Indexing: Roots Analysis Perspective 10.4. Start-ups Focused on Deep Learning in Diagnostics 10.4.1. Methodology and Key Parameters 10.4.2. Analysis by Location of Headquarters 10.5. Benchmarking Analysis of Start-ups Focused on Deep Learning in Diagnostics 10.5.1. Analysis by Focus Area 10.5.2. Analysis by Therapeutic Area 10.5.3. Analysis by Compatible Device 10.5.4. Analysis by Type of Offering 10.5.5. Start-up Health Indexing: Roots Analysis Perspective 11. COMPANY VALUATION ANALYSIS 11.1. Chapter Overview 11.2. Company Valuation Analysis: Key Parameters 11.3. Methodology 11.4. Company Valuation Analysis: Roots Analysis Proprietary Scores 12. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DRUG DISCOVERY 12.1. Chapter Overview 12.2. Forecast Methodology 12.3. Key Assumptions 12.4. Overall Deep Learning in Drug Discovery Market, 2023-2035 12.4.1. Deep Learning in Drug Discovery Market: Analysis by Target Therapeutic Area, 2023-2035 12.4.1.1. Deep Learning in Drug Discovery Market for Oncological Disorders, 2023-2035 12.4.1.2. Deep Learning in Drug Discovery Market for Infectious Diseases, 2023-2035 12.4.1.3. Deep Learning in Drug Discovery Market for Neurological Disorders, 2023-2035 12.4.1.4. Deep Learning in Drug Discovery Market for Immunological Disorders, 2023-2035 12.4.1.5. Deep Learning in Drug Discovery Market for Endocrine Disorders, 2023-2035 12.4.1.6. Deep Learning in Drug Discovery Market for Cardiovascular Disorders, 2023-2035 12.4.1.7. Deep Learning in Drug Discovery Market for Respiratory Disorders, 2023-2035 12.4.1.8. Deep Learning in Drug Discovery Market for Other Disorders, 2023-2035 12.4.2. Deep Learning in Drug Discovery Market: Analysis by Geography, 2023-2035 12.4.2.1. Deep Learning in Drug Discovery Market in North America, 2023-2035 12.4.2.1.1. Deep Learning in Drug Discovery Market in the US, 2023-2035 12.4.2.1.2. Deep Learning in Drug Discovery Market in Canada, 2023-2035 12.4.2.2. Deep Learning in Drug Discovery Market in Europe, 2023-2035 12.4.2.2.1. Deep Learning in Drug Discovery Market in the UK, 2023-2035 12.4.2.2.2. Deep Learning in Drug Discovery Market in France, 2023-2035 12.4.2.2.3. Deep Learning in Drug Discovery Market in Germany, 2023-2035 12.4.2.2.4. Deep Learning in Drug Discovery Market in Spain, 2023-2035 12.4.2.2.5. Deep Learning in Drug Discovery Market in Italy, 2023-2035 12.4.2.2.6. Deep Learning in Drug Discovery Market in Rest of Europe, 2023-2035 12.4.2.3. Deep Learning in Drug Discovery Market in Asia Pacific, 2023-2035 12.4.2.3.1. Deep Learning in Drug Discovery Market in China, 2023-2035 12.4.2.3.2. Deep Learning in Drug Discovery Market in India, 2023-2035 12.4.2.3.3. Deep Learning in Drug Discovery Market in Japan, 2023-2035 12.4.2.3.4. Deep Learning in Drug Discovery Market in Australia, 2023-2035 12.4.2.3.5. Deep Learning in Drug Discovery Market in South Korea, 2023-2035 12.4.2.4. Deep Learning in Drug Discovery Market in Rest of the World, 2023-2035 12.5. Deep Learning in Drug Discovery Market: Cost Saving Potential 12.5.1. Key Assumptions and Methodology 12.5.2. Deep Learning in Drug Discovery Market: Overall Cost Saving Potential, 2023-2035 13. MARKET SIZING AND OPPORTUNITY ANALYSIS: DEEP LEARNING IN DIAGNOSTICS 13.1. Chapter Overview 13.2. Forecast Methodology 13.3. Key Assumptions 13.4. Overall Deep Learning in Diagnostics Market, 2023-2035 13.4.1. Deep Learning in Diagnostics Market: Analysis by Target Therapeutic Area, 2023-2035 13.4.1.1. Deep Learning in Diagnostics Market for Oncological Disorders, 2023-2035 13.4.1.2. Deep Learning in Diagnostics Market for Cardiovascular Disorders, 2023-2035 13.4.1.3. Deep Learning in Diagnostics Market for Neurological Disorders, 2023-2035 13.4.1.4. Deep Learning in Diagnostics Market for Endocrine Disorders, 2023-2035 13.4.1.5. Deep Learning in Diagnostics Market for Respiratory Disorders, 2023-2035 13.4.1.6. Deep Learning in Diagnostics Market for Ophthalmic Disorders, 2023-2035 13.4.1.7. Deep Learning in Diagnostics Market for Infectious Diseases, 2023-2035 13.4.1.8. Deep Learning in Diagnostics Market for Musculoskeletal Disorders, 2023-2035 13.4.1.9. Deep Learning in Diagnostics Market for Inflammatory Disorders, 2023-2035 13.4.1.10. Deep Learning in Diagnostics Market for Other Disorders, 2023-2035 13.4.2. Deep Learning in Diagnostics Market: Analysis by Geography, 2023-2035 13.4.2.1. Deep Learning in Diagnostics Market in North America, 2023-2035 13.4.2.2. Deep Learning in Diagnostics Market in Europe, 2023-2035 13.4.2.3. Deep Learning in Diagnostics Market in Asia Pacific, 2023-2035 13.4.2.4. Deep Learning in Diagnostics Market in Rest of the World, 2023-2035 13.5. Deep Learning in Diagnostics Market: Cost Saving Potential 13.5.1. Key Assumptions and Methodology 13.5.2. Deep Learning in Diagnostics Market: Overall Cost Saving Potential, 2023-2035 14. DEEP LEARNING IN HEALTHCARE: EXPERT INSIGHTS 14.1. Chapter Overview 14.2. Sean Lane, Chief Executive Officer (Olive) 14.3. Junaid Kalia, Founder (NeuroCare.AI) and Adeel Memon, Assistant Professor, Neurology Specialist (West Virginia University Hospitals) 14.4. David Reich, President / Chief Operating Officer (The Mount Sinai Hospital) and Robbie Freeman, Vice President of Clinical Innovation (The Mount Sinai Hospital) 14.5. Elad Benjamin, Vice President, Business Leader Clinical Data Services (Philips) and Jonathan Laserson, Senior Deep Learning Researcher (Apple) 14.6. Kevin Lyman, Founder and Chief Science Officer (Enlitic) 15. CONCLUDING REMARKS 16. INTERVIEW TRANSCRIPTS 16.1. Chapter Overview 16.2. Nucleai 16.2.1. Company Overview 16.2.2. Interview Transcript: Avi Veidman, Chief Executive Officer and Emily Salerno, Commercial Strategy and Operations Lead 16.3. Mediwhale 16.3.1. Company Overview 16.3.2. Interview Transcript: Kevin Choi, Chief Executive Officer 16.4. Arterys 16.4.1. Company Overview 16.4.2. Interview Transcript: Babak Rasolzadeh, Former Vice President of Product and Software Development 16.5. AlgoSurg 16.5.1. Company Overview 16.5.2. Interview Transcript: Vikas Karade, Founder, Chief Executive Officer 16.6. ContextVision 16.6.1. Company Overview 16.6.2. Interview Transcript: Walter de Back, Former Research Scientist 16.7. Advenio Technosys 16.7.1. Company Overview 16.7.2. Interview Transcript: Mausumi Acharya, Chief Executive Officer 16.8. Arterys 16.8.1. Company Overview 16.8.2. Interview Transcript: Carla Leibowitz, Head of Strategy and Marketing 16.9. Arya.ai 16.9.1. Company Overview 16.9.2. Interview Transcript: Deekshith Marla, Chief Technical Officer and Sanjay Bhadra, Chief Operational Officer 17. APPENDIX 1: TABULATED DATA 18. APPENDIX 2: LIST OF COMPANIES AND ORGANIZATIONS
ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。本レポートと同分野の最新刊レポート
Roots Analysis社の分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
よくあるご質問Roots Analysis社はどのような調査会社ですか?Roots Analysisは2013年設立の医薬品・医療機器が専門の調査会社です。 医薬品の製造委託や創薬のデジタル化など、最新の医薬業界の分析を行っています。 もっと見る 調査レポートの納品までの日数はどの程度ですか?在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
注文の手続きはどのようになっていますか?1)お客様からの御問い合わせをいただきます。
お支払方法の方法はどのようになっていますか?納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
データリソース社はどのような会社ですか?当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
|
詳細検索
2024/11/22 10:26 155.52 円 163.34 円 198.56 円 |