世界各国のリアルタイムなデータ・インテリジェンスで皆様をお手伝い

希土類元素の市場レポート:用途別(磁石、ニッケル水素電池、自動車触媒、ディーゼルエンジン、流動分解触媒、ホスファ、ガラス、研磨粉、その他)、地域別 2024-2032


Rare Earth Elements Market Report by Application (Magnets, NiMH Batteries, Auto Catalysts, Diesel Engines, Fluid Cracking Catalyst, Phosphers, Glass, Polishing Powders, and Others), and Region 2024-2032

世界の希土類元素市場規模は、2023年に110億米ドルに達しました。今後、IMARC Groupは、市場が2032年までに343億米ドルに達し、2024年から2032年の間に13.1%の成長率(CAGR)を示すと予測しています。さまざまな... もっと見る

 

 

出版社 出版年月 電子版価格 ページ数 言語
IMARC Services Private Limited.
アイマークサービス
2024年1月30日 US$3,899
シングルユーザライセンス
ライセンス・価格情報
注文方法はこちら
145 英語

日本語のページは自動翻訳を利用し作成しています。


 

サマリー

世界の希土類元素市場規模は、2023年に110億米ドルに達しました。今後、IMARC Groupは、市場が2032年までに343億米ドルに達し、2024年から2032年の間に13.1%の成長率(CAGR)を示すと予測しています。さまざまな分野での希土類元素の有用性に対する認識の高まり、さまざまな産業用途、家電製品の広範な採用、持続可能でクリーンなエネルギーソリューションへのシフトなどが、市場を推進している主な要因の一部です。

希土類元素は、15種のランタノイドにスカンジウムとイットリウムを加えた17種の化学元素からなるグループである。その名前とは裏腹に、ほとんどの希土類元素は地殻中で特に希少というわけではない。希少」なのは、採掘や精製が難しいからである。これらの元素は、ユニークな磁気特性、触媒特性、発光特性で知られており、さまざまなハイテク用途で重要な役割を担っている。スマートフォンや家電製品から再生可能エネルギー・システムや高度な軍事技術に至るまで、幅広い製品に不可欠な構成要素となっている。

コンシューマーエレクトロニクス、自動車、再生可能エネルギーなど、さまざまな産業における大幅な技術革新が、世界中の希土類元素市場の成長を促進する重要な要因の1つとなっています。希土類元素は、電池、磁石、電子ディスプレイなどの部品を製造する上で極めて重要であり、その需要は技術の進歩とともに高まっています。これらの元素は、レーダーシステム、ジェットエンジン、ミサイル誘導システムに使用される高性能材料の製造に不可欠であるため、市場は防衛用途での役割によっても牽引されている。グリーンエネルギーの重視の高まりも、主要な成長促進要因として作用している。レアアース元素は、風力タービンや電気自動車の生産に不可欠であり、二酸化炭素排出量を削減するという世界的な持続可能性の目標に合致しています。さらに、多くのレアアース供給が特定の地域に集中しているため、サプライチェーンに潜在的なボトルネックが発生しており、地政学と貿易関係が市場に大きな影響を与えています。さらに、レアアースを使用する技術への補助金や戦略的備蓄を含む政府の政策が、世界中の市場に前向きな見通しを生み出しています。

レアアース市場の動向/推進要因:
大幅な技術進歩

レアアース需要の最も強力な原動力の1つは、技術革新の絶え間ないペースです。これらの元素は、数多くのハイテク用途に不可欠です。例えば、風力タービンに使用される強力な磁石にはネオジムが必要であり、ハイブリッド車や電気自動車のバッテリーにはランタンが使用されることが多い。これに加えて、スマートフォン、タブレット端末、ノートパソコンなど、多くの電子機器には、より小型で効率的な部品を実現するレアアース(希土類元素)が使用されている。これらの技術が進化を続け、採用率が上昇するにつれて、レアアースに対する需要は急増し、市場価値をさらに押し上げている。

グリーンエネルギーへの取り組みの高まり

環境の持続可能性は、世界中の政府や組織にとって焦点となりつつあり、クリーンエネルギー技術への需要を刺激しています。レアアース(希土類元素)は、この分野で重要な役割を果たしている。ネオジムやジスプロシウムなどの元素は、風力タービンの機能に不可欠な永久磁石の生産に使用される。同様に、輸送部門の電化の推進も、電池や電気モーターに使用されるレアアース元素の需要を押し上げている。各国が野心的な気候目標を達成し、再生可能エネルギー源への移行を目指す中、これらの元素の市場は活気を帯びている。

防衛用途の増加

防衛用途における希土類元素の需要は、市場の成長に大きく貢献しています。これらの元素は、さまざまな高度な軍事技術に不可欠です。たとえば、レアアースは精密誘導弾、レーダーシステム、航空電子工学の製造に不可欠なコンポーネントです。また、暗視ゴーグルやその他の光学機器用の特殊ガラスの製造にも使用されている。地政学的な緊張が高まり、各国が防衛能力の近代化にさらに投資するようになると、レアアースの必要性が高まります。高性能材料への軍事的な依存は、これらの元素を戦略的優先事項とし、しばしば備蓄や長期調達契約につながる。

希土類元素の産業区分:
IMARC Groupは、世界の希土類元素市場レポートの各セグメントにおける主要動向の分析と、2024年から2032年までの世界および地域レベルの予測を提供しています。当レポートでは、市場を用途別に分類しています。

用途別の内訳

磁石
ニッケル水素電池
自動車触媒
ディーゼルエンジン
流動クラッキング触媒
ホスファ
ガラス
研磨パウダー
その他

磁石が市場を席巻

用途に基づく市場の詳細な分類と分析も報告書に記載されている。これには、磁石、ニッケル水素電池、自動車触媒、ディーゼルエンジン、流動分解触媒、ホスファ、ガラス、研磨粉、その他が含まれる。報告書によると、磁石が最大の市場シェアを占めている。

希土類元素、特にネオジム、ジスプロシウム、サマリウムは、高性能磁石の開発に重要な役割を果たしている。これらは普通の磁石ではなく、従来のフェライト磁石やアルニコ磁石と比べて優れた磁気特性を備えている。ネオジム磁石は、温度安定性を向上させるために少量のジスプロシウムと組み合わされることが多く、強力でコンパクトな磁石を必要とするさまざまな用途で広く使用されています。再生可能エネルギー分野では、風力タービン発電機に欠かせない部品となっています。その高い磁力は、より効率的なエネルギー変換を可能にし、電気出力を最大化します。自動車産業では、電気自動車やハイブリッド車のモーターに使用され、出力と効率の向上に貢献しています。これらの磁石は、ヘッドフォン、スマートフォン、ハードディスク・ドライブなどの家電製品にも普及しており、小型で高い磁力が特に役立っている。さらに、MRI装置のような強力な磁場によって撮像する医療技術にも欠かせない。

地域別内訳

中国
日本・北東アジア
米国

中国が最大の市場セグメント

同レポートは、中国、日本・北東アジア、米国を含むすべての主要地域市場についても包括的な分析を行っている。それによると、中国が最大の市場シェアを占めている。

希土類元素の世界供給の大部分を占める中国では、いくつかの要因が国内外を問わず市場を牽引しています。中国は、レアアースに大きく依存する電子機器製造部門が急成長している。コンシューマーエレクトロニクスの世界的なハブとして、これらの元素の内需は高い。中国政府は、レアアース産業を規制・促進するための戦略的政策を実施している。これには、輸出割当、戦略的備蓄、国内生産を奨励するための補助金などが含まれる。中国は、レアアースのサプライチェーンにおいて圧倒的な地位を占めているため、世界の価格と供給力に影響を与えることができる。これが好循環を生み、国内の採掘・加工施設へのさらなる投資を引き寄せている。中国は、レアアースを必要とする風力タービンや電気自動車などの再生可能エネルギー技術に多額の投資を行っている。これは、同国の野心的な環境目標と一致している。研究と技術への投資は、レアアースの抽出と加工をより効率的で環境的に持続可能なものにすることを目的としており、中国の競争力を維持しています。

競争環境:
レアアース市場では、主要プレーヤーがその地位を強化し、需要の増加に対応するために、さまざまな戦略的取り組みを行っています。これには、抽出技術を強化し、精製プロセスの効率を向上させるための研究開発への投資が含まれる。各社はまた、他の鉱山会社や化学会社だけでなく、テクノロジー企業、防衛請負業者、再生可能エネルギー・プロバイダーなどのエンドユーザーとの提携や協力関係も模索している。大手企業の中には、特にレアアースを取り巻く地政学的センシティビティを考慮して、安定したサプライチェーンを確保するために政府と緊密に連携しているところもあります。企業と国家の両方が供給リスクの軽減を目指しているため、戦略的備蓄と長期契約が一般的になりつつあります。さらに、市場リーダーは、技術導入と産業成長により需要が高まっている新興市場を開拓するため、地理的な足跡を拡大しています。供給源の多様化も、特定地域への依存を減らすことを目的とした重要な戦略である。

本レポートでは、市場の競争環境について包括的な分析を行っている。主要企業の詳細なプロフィールも掲載している。市場の主要企業には以下のようなものがある:

リナス・コーポレーション・リミテッド
アラフラ・リソーシズ・リミテッド
グレート・ウェスタン・ミネラルズ・グループ社
アバロン・アドバンスト・マテリアルズ社
グリーンランド・ミネラルズ・リミテッド
アルケイン・リソーシズ・リミテッド
ネオ・パフォーマンス・マテリアルズ
イルカ・リソース・リミテッド
IREL(インド)リミテッド
カナダ・レアアース・コーポレーション
最近の動向
2023年4月、ハイデラバードに拠点を置く国立地球物理学研究所は、アンドラ・プラデシュ州のアナンタプール市で15種類のレアアース(希土類元素)の大鉱床を発見した。レアアースは、多くの電子機器や、医療技術、航空宇宙、防衛を含むさまざまな産業用途の重要な構成要素である。
2021年12月、China Rare Earth Group Co.Ltd.は、中国の国有資産監督当局が直接監督する国有企業(SOE)であり、中国東部の江西省甘州市に正式に設立された。新たに発足したレアアース・メガSOEは、レアアース業界を支配する「ビッグ6」SOEのうち3社(中国アルミニウム集団(CHALCO)、中国金属集団公司、甘州希土集団有限公司)のレアアース部門と、2つの研究会社(中国鉄鋼研究院集団とGrinm Group Corporation Ltd.)を含む、いくつかのトップ産業メーカーのコングロマリットである。
日本は2022年12月、東京の南東約1,900kmの太平洋に浮かぶサンゴ環礁、南鳥島沖の深海底の泥から、2024年に電気自動車やハイブリッド車向けにレアアースの採掘を開始する。日本は、レアアース(希土類金属)の中国への依存度を下げることを目指している。

本レポートで扱う主な質問
1.2023年の希土類元素の世界市場規模は?
2.2024年~2032年の世界の希土類元素市場の予想成長率は?
3.COVID-19が世界の希土類元素市場に与えた影響は?
4.世界の希土類元素市場を牽引する主な要因は?
5.希土類元素の世界市場の用途別内訳は?
6.希土類元素の世界市場における主要地域は?
7.希土類元素の世界市場における主要プレーヤー/企業は?

ページTOPに戻る


目次

1 Preface
2 Scope and Methodology
2.1 Objectives of the Study
2.2 Stakeholders
2.3 Data Sources
2.3.1 Primary Sources
2.3.2 Secondary Sources
2.4 Market Estimation
2.4.1 Bottom-Up Approach
2.4.2 Top-Down Approach
2.5 Forecasting Methodology
3 Executive Summary
4 What are Rare Earth Elements?
5 Rare Earth Elements: Are they Really Rare?
5.1 Reserve Estimates
5.2 How Long Will They Last?
6 Rare Earth Elements: Mining Economics
6.1 Mine Valuation: Grades & Composition are Key
6.2 Development of a New Project: Can Take Several Years
6.3 Rare Earth Mining Costs: Largely Location and Grade Development
6.4 Infrastructure & Capital Costs
6.5 Operating Costs
6.6 Key Projects
6.6.1 Arafura Resources Limited-Noland Project
6.6.2 Nechalacho Rare Earth Elements Project
6.6.3 Kvanefjeld Project-Greenland Minerals & Energy Limited
6.6.4 Dubbo Zirconia-Alkane Resources Limited
6.7 Mining and Processing
6.7.1 Mining
6.7.2 Downstream Processing
6.8 Prices
6.8.1 Factors Affecting Rare Earth Element Prices
6.8.2 Historical Prices
6.8.3 Pricing Forecast
7 China’s Role in the Global Rare Earth Elements Market
7.1 China has a Monopoly Over Rare Earth Elements
7.2 Mining Costs in China Are Significantly Lower Than Other Rare Earth Producers
7.3 Miners Have Benefitted from the Lack of Proper Working Standards and Environmental Regulations
7.4 China Has a Significantly Higher In-house Expertise Compared to Other Rare Earth Producers
7.5 China is Strategically Increasing Production Quotas to Sustain Global Dominance in Rare Earth Elements Market
7.6 China Aims to Become an Exporter of Higher Value Goods
8 Global Rare Earth Elements Market
8.1 Total Sales and Production of Rare Earth Elements
8.2 Production of Rare Earth Elements by Region
8.2.1 Current Operational Mines
8.2.1.1 Bayan Obo, China
8.2.1.2 Longnan, China
8.2.1.3 Xunwu, China
8.2.1.4 India
8.2.1.5 Eastern Coast, Brazil
8.2.1.6 Lahat, Malaysia
8.2.1.7 Mt. Weld, Australia
8.2.1.8 Mountain Pass, United States
8.2.1.9 Nolans, Australia
8.2.1.10 Steenkampskraal, South Africa
8.2.1.11 Kvanefjeld, Greenland
8.2.1.12 Dong Pao, Vietnam
8.2.1.13 Dubbo Zirconia, Australia
8.2.2 Potential Operational Mines
8.2.2.1 Nechalacho, Canada
8.3 Consumption of Rare Earth Elements by Region
8.3.1 China
8.3.2 Japan & Northeast Asia
8.3.3 United States
9 Supply & Demand of Individual Rare Earth Elements
9.1 Elements that will Face Supply Shortages in the Near Future
9.1.1 Praseodymium
9.1.1.1 Elements Overview & Supply Risks
9.1.1.2 Supply & Demand
9.1.2 Neodymium
9.1.2.1 Elements Overview & Supply Risks
9.1.2.2 Supply & Demand
9.2 Elements that be Oversupplied in the Near Future
9.2.1 Terbium
9.2.1.1 Elements Overview & Supply Risks
9.2.1.2 Supply & Demand
9.2.2 Yttrium
9.2.2.1 Elements Overview & Supply Risks
9.2.2.2 Supply & Demand
9.2.3 Lanthanum
9.2.3.1 Elements Overview & Supply Risks
9.2.3.2 Supply & Demand
9.2.4 Cerium
9.2.4.1 Elements Overview & Supply Risks
9.2.4.2 Supply & Demand
9.2.5 Dysprosium
9.2.5.1 Elements Overview & Supply Risks
9.2.5.2 Supply & Demand
9.2.6 Samarium
9.2.6.1 Elements Overview & Supply Risks
9.2.6.2 Supply & Demand
9.2.7 Europium
9.2.7.1 Elements Overview & Supply Risks
9.2.7.2 Supply & Demand
10 Market by Application
10.1 Magnets
10.2 NiMH Batteries
10.3 Auto Catalysts
10.4 Diesel Engines
10.5 Fluid Cracking Catalyst
10.6 Phosphers
10.7 Glass
10.8 Polishing Powders
10.9 Other Applications
11 Overview on Mining and Processing of Ion-Adsorption Clays
11.1 Current Technologies
11.2 Typical Costs Involved With Processing RE Oxides
12 Overcoming the Potential Shortfalls in Supply
12.1 Stockpiling
12.2 Recycling
12.3 Substitution
12.4 Material Shortfall Strategies by Various Rare Earth Consumers
13 Competitive Landscape
13.1 Market Structure
13.2 Key Players
13.3 Profiles of Key Players
13.3.1 Lynas Corporation Ltd.
13.3.2 Arafura Resources Limited
13.3.3 Great Western Minerals Group Ltd.
13.3.4 Avalon Advanced Materials Inc.
13.3.5 Greenland Minerals Ltd
13.3.6 Alkane Resources Ltd
13.3.7 Neo Performance Materials
13.3.8 Iluka Resource Limited
13.3.9 IREL (India) Limited
13.3.10 Canada Rare Earths Corporation
List of Figures
Figure 1: Periodic Table Showing Rare Earth Elements
Figure 2: Topology of Rare Earth Elements
Figure 3: Global: Rare Earth Metal Reserves by Country (in Million Metric Tons), 2023
Figure 4: Global: Rare Earth Metal Reserves by Country (in %), 2023
Figure 5: Comparative Total Rare Earth Oxide Values of Various Rare Earth Mines
Figure 6: Kvanefjeld Project Capital Cost Estimated Breakdown
Figure 7: Global: Sources of Rare Earth Metals
Figure 8: Flow Chart: Concentration of Rare Earth Ores
Figure 9: Flow Chart: Extraction of Rare Earths from their Concentrated Ores
Figure 10: China & US: Average Labor Costs Per Hour (in US$), 2023
Figure 11: Global: Rare Earth Metals Production (in 000’ Metric Tons), 2018-2023
Figure 12: Global: Rare Earth Metals Market (in Billion US$), 2018-2023
Figure 13: Global: Rare Earth Metals Production Forecast (in 000’ Metric Tons), 2024-2032
Figure 14: Global: Rare Earth Metals Market Forecast (in Billion US$), 2024-2032
Figure 15: Global: Rare Earth Metals Production by Country (in %), 2023
Figure 16: Bayan Obo Rare Earth Mine: Composition of Various Elements (in %)
Figure 17: Longnan Rare Earth Mine: Composition of Various Elements (in %)
Figure 18: Xunwu Rare Earth Mine: Composition of Various Elements (in %)
Figure 19: India Rare Earth Mine: Composition of Various Elements (in %)
Figure 20: Eastern Coast Rare Earth Mine: Composition of Various Elements (in %)
Figure 21: Lahat Rare Earth Mine: Composition of Various Elements (in %)
Figure 22: Mt Weld Rare Earth Mine: Composition of Various Elements (in %)
Figure 23: Mountain Pass Rare Earth Mine: Composition of Various Elements (in %)
Figure 24: Nolans Rare Earth Mine: Composition of Various Elements (in %)
Figure 25: Steenkampskraal Rare Earth Mine: Composition of Various Elements (in %)
Figure 26: Kvanefjeld Rare Earth Mine: Composition of Various Elements (in %)
Figure 27: Dong Pao Rare Earth Mine: Composition of Various Elements (in %)
Figure 28: Dubbo Zirconia Rare Earth Mine: Composition of Various Elements (in %)
Figure 29: Nechalacho Rare Earth Mine: Composition of Various Elements (in %)
Figure 30: Global: Rare Earth Elements Consumption by Region (in %), 2023
Figure 31: Global: Rare Earth Elements Consumption by Region Forecast (in %), 2032
Figure 32: Praseodymium: Supply & Demand Balance (in Metric Tons), 2023
Figure 33: Praseodymium: Historical Prices (in US$/kg), 2018-2023
Figure 34: Praseodymium: Price Forecast (in US$/kg), 2024-2032
Figure 35: Neodymium: Supply & Demand Balance (in Metric Tons), 2023
Figure 36: Neodymium: Historical Prices (in US$/kg), 2018-2023
Figure 37: Neodymium: Price Forecast (in US$/kg), 2024-2032
Figure 38: Terbium: Supply & Demand Balance (in Metric Tons), 2023
Figure 39: Terbium: Historical Prices (in US$/kg), 2018-2023
Figure 40: Terbium: Price Forecast (in US$/kg), 2024-2032
Figure 41: Yttrium: Supply & Demand Balance (in Metric Tons), 2023
Figure 42: Yttrium: Historical Prices (in US$/kg), 2018-2023
Figure 43: Yttrium: Price Forecast (in US$/kg), 2024-2032
Figure 44: Lanthanum: Supply & Demand Balance (in Metric Tons), 2023
Figure 45: Lanthanum: Historical Prices (in US$/kg), 2018-2023
Figure 46: Lanthanum: Price Forecast (in US$/kg), 2024-2032
Figure 47: Cerium: Supply & Demand Balance (in Metric Tons), 2023
Figure 48: Cerium: Historical Prices (in US$/kg), 2018-2023
Figure 49: Cerium: Price Forecast (in US$/kg), 2024-2032
Figure 50: Dysprosium: Supply & Demand Balance (in Metric Tons), 2023
Figure 51: Dysprosium: Historical Prices (in US$/kg), 2018-2023
Figure 52: Dysprosium: Price Forecast (in US$/kg), 2024-2032
Figure 53: Samarium: Supply & Demand Balance (in Metric Tons), 2023
Figure 54: Samarium: Historical Prices (in US$/kg), 2018-2023
Figure 55: Samarium: Price Forecast (in US$/kg), 2024-2032
Figure 56: Europium: Supply & Demand Balance (in Metric Tons), 2023
Figure 57: Europium: Historical Prices (in US$/kg), 2018-2023
Figure 58: Europium: Price Forecast (in US$/kg), 2024-2032
Figure 59: Diesel Particulate Filter
List of Tables
Table 1: Rare Earth Elements: Light & Heavy Definitions
Table 2: Rare Earth Elements: Characteristics & Applications
Table 3: Light & Heavy Rare Earth Elements: Key Barriers to Entry
Table 4: Total Time & Stages Required in Constructing & Bringing a Rare Earth Mine to Production
Table 5: Rare Earth Elements: Mining & Processing Costs
Table 6: Arafura Resources Limited-Nolans Project: Mining & Production
Table 7: Arafura Resources Limited-Nolans Project: Financials Involved
Table 8: Nechalacho Earth Elements Project Capital Cost Summary
Table 9: Nechalacho Earth Elements Site Capital Cost Summary
Table 10: Nechalacho Earth Elements Project Operating Cost
Table 11: Kvanefjeld Project Capital Cost Summary
Table 12: Kvanefjeld Project Operating Cost Summary
Table 13: Dubbo Zirconia Project Capital Cost Estimates
Table 14: Dubbo Zirconia Project Operating Cost Estimates
Table 15: Sources of Rare Earth Elements & Their Composition
Table 16: Average Annual Prices of Individual Rare Earth Elements (in US$/Kg), 2018-2023
Table 17: Average Annual Price Forecast of Individual Rare Earth Elements (in US$/Kg), 2024-2032
Table 18: China: Rare Earth Elements Production Quota (in Metric Tons), 2018-2023
Table 19: Global: Distribution of Elements in Various Rare Earth Mines (in %)
Table 20: Bayan Obo Rare Earth Mine: Composition of Various Elements (in %)
Table 21: Longnan Rare Earth Mine: Composition of Various Elements (in %)
Table 22: Xunwu Rare Earth Mine: Composition of Various Elements (in %)
Table 23: India Rare Earth Mine: Composition of Various Elements (in %)
Table 24: Eastern Coast Rare Earth Mine: Composition of Various Elements (in %)
Table 25: Lahat Rare Earth Mine: Composition of Various Elements (in %)
Table 26: Mt Weld Rare Earth Mine: Composition of Various Elements (in %)
Table 27: Mountain Pass Rare Earth Mine: Composition of Various Elements (in %)
Table 28: Nolans Rare Earth Mine: Composition of Various Elements (in %)
Table 29: Steenkampskraal Rare Earth Mine: Composition of Various Elements (in %)
Table 30: Kvanefjeld Rare Earth Mine: Composition of Various Elements (in %)
Table 31: Dong Pao Rare Earth Mine: Composition of Various Elements (in %)
Table 32: Dubbo Zirconia Rare Earth Mine: Composition of Various Elements (in %)
Table 33: Nechalacho Rare Earth Mine: Composition of Various Elements (in %)
Table 34: Global: Rare Earth Elements Consumption by Region & Application (in Metric Tons), 2023
Table 35: Global: Rare Earth Elements Consumption by Region & Application Forecast (in Metric Tons), 2032
Table 36: China: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
Table 37: Japan & Northeast Asia: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
Table 38: US: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
Table 39: Global: Supply of Various Rare Earth Elements (in Metric Tons), 2023
Table 40: Global: Supply & Demand of Various Rare Earth Elements (in Metric Tons), 2023
Table 41: Praseodymium: Overview, Importance to Clean Energy & Supply Risk
Table 42: Neodymium: Overview, Importance to Clean Energy & Supply Risk
Table 43: Terbium: Overview, Importance to Clean Energy & Supply Risk
Table 44: Yttrium: Overview, Importance to Clean Energy & Supply Risk
Table 45: Lanthanum: Overview, Importance to Clean Energy & Supply Risk
Table 46: Cerium: Overview, Importance to Clean Energy & Supply Risk
Table 47: Dysprosium: Overview, Importance to Clean Energy & Supply Risk
Table 48: Samarium: Overview, Importance to Clean Energy & Supply Risk
Table 49: Europium: Overview, Importance to Clean Energy & Supply Risk
Table 50: Global: Demand of Rare Earth Elements by Application (in Metric Tons), 2018-2023
Table 51: Global: Demand of Rare Earth Elements by Application (in Metric Tons), 2024-2032
Table 52: Global: Demand of Rare Earth Elements for Magnets (in Metric Tons), 2018-2023
Table 53: Global: Demand of Rare Earth Elements for Magnets (in Metric Tons), 2024-2032
Table 54: Global: Demand of Rare Earth Elements for NiMH Batteries (in Metric Tons), 2018-2023
Table 55: Global: Demand of Rare Earth Elements for NiMH Batteries (in Metric Tons), 2024-2032
Table 56: Global: Demand of Rare Earth Elements for Auto Catalysts (in Metric Tons), 2018-2023
Table 57: Global: Demand of Rare Earth Elements for Auto Catalysts (in Metric Tons), 2024-2032
Table 58: Global: Demand of Rare Earth Elements for Diesel Engines (in Metric Tons), 2018-2023
Table 59: Global: Demand of Rare Earth Elements for Diesel Engines (in Metric Tons), 2024-2032
Table 60: Global: Demand of Rare Earth Elements for FCC (in Metric Tons), 2018-2023
Table 61: Global: Demand of Rare Earth Elements for FCC (in Metric Tons), 2024-2032
Table 62: Global: Demand of Rare Earth Elements for Phosphers (in Metric Tons), 2018-2023
Table 63: Global: Demand of Rare Earth Elements for Phosphers (in Metric Tons), 2024-2032
Table 64: Global: Demand of Rare Earth Elements for Glass (in Metric Tons), 2018-2023
Table 65: Global: Demand of Rare Earth Elements for Glass (in Metric Tons), 2024-2032
Table 66: Global: Demand of Rare Earth Elements for Polishing Powders (in Metric Tons), 2018-2023
Table 67: Global: Demand of Rare Earth Elements for Polishing Powders (in Metric Tons), 2024-2032
Table 68: Global: Demand of Rare Earth Elements for Other Applications (in Metric Tons), 2018-2023
Table 69: Global: Demand of Rare Earth Elements for Other Applications (in Metric Tons), 2024-2032
Table 70: Rare Earth Elements Processing Costs (US$/lb, TREO)
Table 71: Mill Operating Costs (US$/lb, TREO)
Table 72: Extraction/ Separation Plant Operating Costs (US$/lb, TREO)
Table 73: Substitution Possibilities in Rare Earth Elements
Table 74: Material Shortfall Strategies by Rare Earth Reserve Rich Countries
Table 75: Material Shortfall Strategies by Countries Not Having Rich Rare Earth Reserves

 

ページTOPに戻る


 

Summary

The global rare earth elements market size reached US$ 11.0 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 34.3 Billion by 2032, exhibiting a growth rate (CAGR) of 13.1% during 2024-2032. The increasing awareness of the utility of rare earth elements across different sectors, various industrial applications, widespread adoption of consumer electronics, and the shift toward sustainable and clean energy solutions are some of the major factors propelling the market.

Rare earth elements are a group of 17 chemical elements that consist of the 15 lanthanides, along with scandium and yttrium. Despite their name, most rare earth elements are not particularly rare in the Earth's crust. What makes them "rare" is the difficulty associated with mining and refining them. These elements are known for their unique magnetic, catalytic, and luminescent properties, which make them critical in various high-technology applications. They are essential components in a wide array of products, ranging from smartphones and consumer electronics to renewable energy systems and advanced military technologies.

Significant technological innovations across various industries, including consumer electronics, automotive, and renewable energy, represent one of the key factors driving the growth of the rare earth elements market across the globe. Rare earth elements are crucial in manufacturing components like batteries, magnets, and electronic displays, whose demand is rising with technological advancements. The market is also driven by their role in defense applications as these elements are essential in producing high-performance materials used in radar systems, jet engines, and missile guidance systems. The growing emphasis on green energy is also acting as a major growth-inducing factor. Rare earth elements are vital in the production of wind turbines and electric vehicles, aligning with global sustainability goals to reduce carbon emissions. Additionally, geopolitics and trade relations significantly impact the market, as many rare earth element supplies are concentrated in specific regions, which are creating potential bottlenecks in supply chains. Moreover, government policies, including subsidies for technologies that use rare earth elements and strategic stockpiling, are creating a positive outlook for the market across the globe.

Rare Earth Elements Market Trends/Drivers:
Significant technological advancements

One of the most potent drivers of demand for rare earth elements is the relentless pace of technological innovation. These elements are indispensable in a plethora of high-tech applications. For instance, the powerful magnets used in wind turbines require neodymium, while hybrid and electric vehicle batteries often employ lanthanum. In addition to this, many electronic devices, such as smartphones, tablets, and laptops contain rare earth elements that enable smaller, and more efficient components. As these technologies continue to evolve and adoption rates climb, the demand for rare earth elements is escalating, which is further driving up the market value.

Rising green energy initiatives

Environmental sustainability is becoming a focal point for governments and organizations worldwide, stimulating the demand for clean energy technologies. Rare earth elements play a critical role in this sector. Elements like neodymium and dysprosium are used in the production of permanent magnets that are integral to the function of wind turbines. Similarly, the drive for electrification of the transport sector also boosts demand for rare earth elements used in batteries and electric motors. As nations strive to meet ambitious climate targets and transition to renewable energy sources, the market for these elements is fueling.

Rising defense applications

The demand for rare earth elements in defense applications significantly contributes to the market growth. These elements are indispensable for a variety of advanced military technologies. For instance, rare earths are essential components in the manufacturing of precision-guided munitions, radar systems, and avionics. They are also used in the production of specialized glass for night-vision goggles and other optical equipment. As geopolitical tensions escalate and nations invest more in modernizing their defense capabilities, the need for rare earth elements rises. Military reliance on high-performance materials makes these elements a strategic priority, often leading to stockpiling and long-term procurement contracts.

Rare Earth Elements Industry Segmentation:
IMARC Group provides an analysis of the key trends in each segment of the global rare earth elements market report, along with forecasts at the global and regional levels for 2024-2032. Our report has categorized the market based on application.

Breakup by Application:

Magnets
NiMH Batteries
Auto Catalysts
Diesel Engines
Fluid Cracking Catalyst
Phosphers
Glass
Polishing Powders
Others

Magnets dominate the market

A detailed breakup and analysis of the market based on the application has also been provided in the report. This includes the magnets, NiMH batteries, auto catalysts, diesel engines, fluid cracking catalyst, phosphers, glass, polishing powders, and others. According to the report, the magnets accounted for the largest market share.

Rare earth elements, particularly neodymium, dysprosium, and samarium, play a critical role in the development of high-performance magnets. These are not ordinary magnets; they offer superior magnetic properties as compared to traditional ferrite or alnico magnets. Neodymium magnets, often combined with small amounts of dysprosium to improve temperature stability, are widely used in a variety of applications requiring strong, compact magnets. In the renewable energy sector, these magnets are essential components in wind turbine generators. Their high magnetic force allows for more efficient energy conversion, thereby maximizing the electrical output. In the automotive industry, they are used in electric and hybrid vehicle motors, contributing to both power and efficiency. These magnets are also prevalent in consumer electronics like headphones, smartphones, and hard disk drives, where their small size and high magnetic strength are particularly beneficial. Additionally, they are crucial in medical technologies such as MRI machines, which rely on strong magnetic fields for imaging.

Breakup by Region:

China
Japan & Northeast Asia
United States

China represents the largest market segment

The report has also provided a comprehensive analysis of all the major regional markets, which include China, Japan & Northeast Asia, and the United States. According to the report, China accounted for the largest market share.

In China, which controls a significant portion of the global supply of rare earth elements, several factors drive the market, both domestically and internationally. China has a booming electronics manufacturing sector that heavily relies on rare earth elements. As a global hub for consumer electronics, the internal demand for these elements is high. The Chinese government is implementing strategic policies to regulate and promote the rare earth industry. These include export quotas, strategic stockpiling, and subsidies to encourage domestic production. China's dominant position in the rare earth supply chain allows it to impact global prices and availability. This creates a virtuous cycle, which is attracting further investment into mining and processing facilities within the country. China is heavily investing in renewable energy technologies, such as wind turbines and electric vehicles, which require rare earth elements. This aligns with the country’s ambitious environmental goals. Investments in research and technology aim to make the extraction and processing of rare earth elements more efficient and environmentally sustainable, which is maintaining China's competitive edge.

Competitive Landscape:
In the rare earth elements market, key players are engaging in a range of strategic initiatives to strengthen their position and capitalize on growing demand. This includes investments in research and development to enhance extraction technologies and improve the efficiency of refining processes. Companies are also exploring partnerships and collaborations, not just with other mining and chemical firms, but also with end-users like technology companies, defense contractors, and renewable energy providers. Some leading players are working closely with governments to ensure stable supply chains, especially given the geopolitical sensitivities surrounding rare earth elements. Strategic stockpiling and long-term contracts are becoming more common as both companies and nations aim to mitigate supply risks. Additionally, market leaders are expanding their geographical footprint to tap into emerging markets where demand is rising due to technological adoption and industrial growth. Diversification of supply sources is also a key strategy, aimed at reducing dependence on specific regions.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

Lynas Corporation Ltd.
Arafura Resources Limited
Great Western Minerals Group Ltd.
Avalon Advanced Materials Inc.
Greenland Minerals Ltd
Alkane Resources Ltd
Neo Performance Materials
Iluka Resource Limited
IREL (India) Limited
Canada Rare Earths Corporation
Recent Developments:
In April 2023, Hyderabad-based National Geophysical Research Institute has found large deposits of 15 Rare Earth Elements (REE) in Andhra Pradesh's Anantapur city. REE is a key component in many electronic devices and various industrial applications, including medical technology, aerospace, and defense.
In December 2021, China Rare Earth Group Co. Ltd, a state-owned enterprise (SOE) directly supervised by China’s state assets regulator was formally established in East China’s Ganzhou, Jiangxi Province. The newly launched rare earth mega SOE is a conglomerate of some top industrial producers, including the rare earth units of three of the “Big Six” SOEs that dominate the rare earth industry – Aluminum Corporation of China (CHALCO), China Minmetals Corporation, and Ganzhou Rare Earth Group Co., Ltd and two research companies – China Iron & Steel Research Institute Group and Grinm Group Corporation Ltd.
In December 2022, Japan to begin extracting rare earth metals from seabed in 2024 for electric vehicles and hybrids from the mud on the deep-sea bottom in an area off Minami-Torishima Island, a coral atoll in the Pacific Ocean about 1,900 kilometers southeast of Tokyo. Japan is aiming to reduce its reliance on China for rare earth metals.

Key Questions Answered in This Report
1. What was the size of the global rare earth elements market in 2023?
2. What is the expected growth rate of the global rare earth elements market during 2024-2032?
3. What has been the impact of COVID-19 on the global rare earth elements market?
4. What are the key factors driving the global rare earth elements market?
5. What is the breakup of the global rare earth elements market based on the application?
6. What are the key regions in the global rare earth elements market?
7. Who are the key players/companies in the global rare earth elements market?



ページTOPに戻る


Table of Contents

1 Preface
2 Scope and Methodology
2.1 Objectives of the Study
2.2 Stakeholders
2.3 Data Sources
2.3.1 Primary Sources
2.3.2 Secondary Sources
2.4 Market Estimation
2.4.1 Bottom-Up Approach
2.4.2 Top-Down Approach
2.5 Forecasting Methodology
3 Executive Summary
4 What are Rare Earth Elements?
5 Rare Earth Elements: Are they Really Rare?
5.1 Reserve Estimates
5.2 How Long Will They Last?
6 Rare Earth Elements: Mining Economics
6.1 Mine Valuation: Grades & Composition are Key
6.2 Development of a New Project: Can Take Several Years
6.3 Rare Earth Mining Costs: Largely Location and Grade Development
6.4 Infrastructure & Capital Costs
6.5 Operating Costs
6.6 Key Projects
6.6.1 Arafura Resources Limited-Noland Project
6.6.2 Nechalacho Rare Earth Elements Project
6.6.3 Kvanefjeld Project-Greenland Minerals & Energy Limited
6.6.4 Dubbo Zirconia-Alkane Resources Limited
6.7 Mining and Processing
6.7.1 Mining
6.7.2 Downstream Processing
6.8 Prices
6.8.1 Factors Affecting Rare Earth Element Prices
6.8.2 Historical Prices
6.8.3 Pricing Forecast
7 China’s Role in the Global Rare Earth Elements Market
7.1 China has a Monopoly Over Rare Earth Elements
7.2 Mining Costs in China Are Significantly Lower Than Other Rare Earth Producers
7.3 Miners Have Benefitted from the Lack of Proper Working Standards and Environmental Regulations
7.4 China Has a Significantly Higher In-house Expertise Compared to Other Rare Earth Producers
7.5 China is Strategically Increasing Production Quotas to Sustain Global Dominance in Rare Earth Elements Market
7.6 China Aims to Become an Exporter of Higher Value Goods
8 Global Rare Earth Elements Market
8.1 Total Sales and Production of Rare Earth Elements
8.2 Production of Rare Earth Elements by Region
8.2.1 Current Operational Mines
8.2.1.1 Bayan Obo, China
8.2.1.2 Longnan, China
8.2.1.3 Xunwu, China
8.2.1.4 India
8.2.1.5 Eastern Coast, Brazil
8.2.1.6 Lahat, Malaysia
8.2.1.7 Mt. Weld, Australia
8.2.1.8 Mountain Pass, United States
8.2.1.9 Nolans, Australia
8.2.1.10 Steenkampskraal, South Africa
8.2.1.11 Kvanefjeld, Greenland
8.2.1.12 Dong Pao, Vietnam
8.2.1.13 Dubbo Zirconia, Australia
8.2.2 Potential Operational Mines
8.2.2.1 Nechalacho, Canada
8.3 Consumption of Rare Earth Elements by Region
8.3.1 China
8.3.2 Japan & Northeast Asia
8.3.3 United States
9 Supply & Demand of Individual Rare Earth Elements
9.1 Elements that will Face Supply Shortages in the Near Future
9.1.1 Praseodymium
9.1.1.1 Elements Overview & Supply Risks
9.1.1.2 Supply & Demand
9.1.2 Neodymium
9.1.2.1 Elements Overview & Supply Risks
9.1.2.2 Supply & Demand
9.2 Elements that be Oversupplied in the Near Future
9.2.1 Terbium
9.2.1.1 Elements Overview & Supply Risks
9.2.1.2 Supply & Demand
9.2.2 Yttrium
9.2.2.1 Elements Overview & Supply Risks
9.2.2.2 Supply & Demand
9.2.3 Lanthanum
9.2.3.1 Elements Overview & Supply Risks
9.2.3.2 Supply & Demand
9.2.4 Cerium
9.2.4.1 Elements Overview & Supply Risks
9.2.4.2 Supply & Demand
9.2.5 Dysprosium
9.2.5.1 Elements Overview & Supply Risks
9.2.5.2 Supply & Demand
9.2.6 Samarium
9.2.6.1 Elements Overview & Supply Risks
9.2.6.2 Supply & Demand
9.2.7 Europium
9.2.7.1 Elements Overview & Supply Risks
9.2.7.2 Supply & Demand
10 Market by Application
10.1 Magnets
10.2 NiMH Batteries
10.3 Auto Catalysts
10.4 Diesel Engines
10.5 Fluid Cracking Catalyst
10.6 Phosphers
10.7 Glass
10.8 Polishing Powders
10.9 Other Applications
11 Overview on Mining and Processing of Ion-Adsorption Clays
11.1 Current Technologies
11.2 Typical Costs Involved With Processing RE Oxides
12 Overcoming the Potential Shortfalls in Supply
12.1 Stockpiling
12.2 Recycling
12.3 Substitution
12.4 Material Shortfall Strategies by Various Rare Earth Consumers
13 Competitive Landscape
13.1 Market Structure
13.2 Key Players
13.3 Profiles of Key Players
13.3.1 Lynas Corporation Ltd.
13.3.2 Arafura Resources Limited
13.3.3 Great Western Minerals Group Ltd.
13.3.4 Avalon Advanced Materials Inc.
13.3.5 Greenland Minerals Ltd
13.3.6 Alkane Resources Ltd
13.3.7 Neo Performance Materials
13.3.8 Iluka Resource Limited
13.3.9 IREL (India) Limited
13.3.10 Canada Rare Earths Corporation
List of Figures
Figure 1: Periodic Table Showing Rare Earth Elements
Figure 2: Topology of Rare Earth Elements
Figure 3: Global: Rare Earth Metal Reserves by Country (in Million Metric Tons), 2023
Figure 4: Global: Rare Earth Metal Reserves by Country (in %), 2023
Figure 5: Comparative Total Rare Earth Oxide Values of Various Rare Earth Mines
Figure 6: Kvanefjeld Project Capital Cost Estimated Breakdown
Figure 7: Global: Sources of Rare Earth Metals
Figure 8: Flow Chart: Concentration of Rare Earth Ores
Figure 9: Flow Chart: Extraction of Rare Earths from their Concentrated Ores
Figure 10: China & US: Average Labor Costs Per Hour (in US$), 2023
Figure 11: Global: Rare Earth Metals Production (in 000’ Metric Tons), 2018-2023
Figure 12: Global: Rare Earth Metals Market (in Billion US$), 2018-2023
Figure 13: Global: Rare Earth Metals Production Forecast (in 000’ Metric Tons), 2024-2032
Figure 14: Global: Rare Earth Metals Market Forecast (in Billion US$), 2024-2032
Figure 15: Global: Rare Earth Metals Production by Country (in %), 2023
Figure 16: Bayan Obo Rare Earth Mine: Composition of Various Elements (in %)
Figure 17: Longnan Rare Earth Mine: Composition of Various Elements (in %)
Figure 18: Xunwu Rare Earth Mine: Composition of Various Elements (in %)
Figure 19: India Rare Earth Mine: Composition of Various Elements (in %)
Figure 20: Eastern Coast Rare Earth Mine: Composition of Various Elements (in %)
Figure 21: Lahat Rare Earth Mine: Composition of Various Elements (in %)
Figure 22: Mt Weld Rare Earth Mine: Composition of Various Elements (in %)
Figure 23: Mountain Pass Rare Earth Mine: Composition of Various Elements (in %)
Figure 24: Nolans Rare Earth Mine: Composition of Various Elements (in %)
Figure 25: Steenkampskraal Rare Earth Mine: Composition of Various Elements (in %)
Figure 26: Kvanefjeld Rare Earth Mine: Composition of Various Elements (in %)
Figure 27: Dong Pao Rare Earth Mine: Composition of Various Elements (in %)
Figure 28: Dubbo Zirconia Rare Earth Mine: Composition of Various Elements (in %)
Figure 29: Nechalacho Rare Earth Mine: Composition of Various Elements (in %)
Figure 30: Global: Rare Earth Elements Consumption by Region (in %), 2023
Figure 31: Global: Rare Earth Elements Consumption by Region Forecast (in %), 2032
Figure 32: Praseodymium: Supply & Demand Balance (in Metric Tons), 2023
Figure 33: Praseodymium: Historical Prices (in US$/kg), 2018-2023
Figure 34: Praseodymium: Price Forecast (in US$/kg), 2024-2032
Figure 35: Neodymium: Supply & Demand Balance (in Metric Tons), 2023
Figure 36: Neodymium: Historical Prices (in US$/kg), 2018-2023
Figure 37: Neodymium: Price Forecast (in US$/kg), 2024-2032
Figure 38: Terbium: Supply & Demand Balance (in Metric Tons), 2023
Figure 39: Terbium: Historical Prices (in US$/kg), 2018-2023
Figure 40: Terbium: Price Forecast (in US$/kg), 2024-2032
Figure 41: Yttrium: Supply & Demand Balance (in Metric Tons), 2023
Figure 42: Yttrium: Historical Prices (in US$/kg), 2018-2023
Figure 43: Yttrium: Price Forecast (in US$/kg), 2024-2032
Figure 44: Lanthanum: Supply & Demand Balance (in Metric Tons), 2023
Figure 45: Lanthanum: Historical Prices (in US$/kg), 2018-2023
Figure 46: Lanthanum: Price Forecast (in US$/kg), 2024-2032
Figure 47: Cerium: Supply & Demand Balance (in Metric Tons), 2023
Figure 48: Cerium: Historical Prices (in US$/kg), 2018-2023
Figure 49: Cerium: Price Forecast (in US$/kg), 2024-2032
Figure 50: Dysprosium: Supply & Demand Balance (in Metric Tons), 2023
Figure 51: Dysprosium: Historical Prices (in US$/kg), 2018-2023
Figure 52: Dysprosium: Price Forecast (in US$/kg), 2024-2032
Figure 53: Samarium: Supply & Demand Balance (in Metric Tons), 2023
Figure 54: Samarium: Historical Prices (in US$/kg), 2018-2023
Figure 55: Samarium: Price Forecast (in US$/kg), 2024-2032
Figure 56: Europium: Supply & Demand Balance (in Metric Tons), 2023
Figure 57: Europium: Historical Prices (in US$/kg), 2018-2023
Figure 58: Europium: Price Forecast (in US$/kg), 2024-2032
Figure 59: Diesel Particulate Filter
List of Tables
Table 1: Rare Earth Elements: Light & Heavy Definitions
Table 2: Rare Earth Elements: Characteristics & Applications
Table 3: Light & Heavy Rare Earth Elements: Key Barriers to Entry
Table 4: Total Time & Stages Required in Constructing & Bringing a Rare Earth Mine to Production
Table 5: Rare Earth Elements: Mining & Processing Costs
Table 6: Arafura Resources Limited-Nolans Project: Mining & Production
Table 7: Arafura Resources Limited-Nolans Project: Financials Involved
Table 8: Nechalacho Earth Elements Project Capital Cost Summary
Table 9: Nechalacho Earth Elements Site Capital Cost Summary
Table 10: Nechalacho Earth Elements Project Operating Cost
Table 11: Kvanefjeld Project Capital Cost Summary
Table 12: Kvanefjeld Project Operating Cost Summary
Table 13: Dubbo Zirconia Project Capital Cost Estimates
Table 14: Dubbo Zirconia Project Operating Cost Estimates
Table 15: Sources of Rare Earth Elements & Their Composition
Table 16: Average Annual Prices of Individual Rare Earth Elements (in US$/Kg), 2018-2023
Table 17: Average Annual Price Forecast of Individual Rare Earth Elements (in US$/Kg), 2024-2032
Table 18: China: Rare Earth Elements Production Quota (in Metric Tons), 2018-2023
Table 19: Global: Distribution of Elements in Various Rare Earth Mines (in %)
Table 20: Bayan Obo Rare Earth Mine: Composition of Various Elements (in %)
Table 21: Longnan Rare Earth Mine: Composition of Various Elements (in %)
Table 22: Xunwu Rare Earth Mine: Composition of Various Elements (in %)
Table 23: India Rare Earth Mine: Composition of Various Elements (in %)
Table 24: Eastern Coast Rare Earth Mine: Composition of Various Elements (in %)
Table 25: Lahat Rare Earth Mine: Composition of Various Elements (in %)
Table 26: Mt Weld Rare Earth Mine: Composition of Various Elements (in %)
Table 27: Mountain Pass Rare Earth Mine: Composition of Various Elements (in %)
Table 28: Nolans Rare Earth Mine: Composition of Various Elements (in %)
Table 29: Steenkampskraal Rare Earth Mine: Composition of Various Elements (in %)
Table 30: Kvanefjeld Rare Earth Mine: Composition of Various Elements (in %)
Table 31: Dong Pao Rare Earth Mine: Composition of Various Elements (in %)
Table 32: Dubbo Zirconia Rare Earth Mine: Composition of Various Elements (in %)
Table 33: Nechalacho Rare Earth Mine: Composition of Various Elements (in %)
Table 34: Global: Rare Earth Elements Consumption by Region & Application (in Metric Tons), 2023
Table 35: Global: Rare Earth Elements Consumption by Region & Application Forecast (in Metric Tons), 2032
Table 36: China: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
Table 37: Japan & Northeast Asia: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
Table 38: US: Rare Earth Elements Consumption by Application (in Metric Tons), 2023 and 2032
Table 39: Global: Supply of Various Rare Earth Elements (in Metric Tons), 2023
Table 40: Global: Supply & Demand of Various Rare Earth Elements (in Metric Tons), 2023
Table 41: Praseodymium: Overview, Importance to Clean Energy & Supply Risk
Table 42: Neodymium: Overview, Importance to Clean Energy & Supply Risk
Table 43: Terbium: Overview, Importance to Clean Energy & Supply Risk
Table 44: Yttrium: Overview, Importance to Clean Energy & Supply Risk
Table 45: Lanthanum: Overview, Importance to Clean Energy & Supply Risk
Table 46: Cerium: Overview, Importance to Clean Energy & Supply Risk
Table 47: Dysprosium: Overview, Importance to Clean Energy & Supply Risk
Table 48: Samarium: Overview, Importance to Clean Energy & Supply Risk
Table 49: Europium: Overview, Importance to Clean Energy & Supply Risk
Table 50: Global: Demand of Rare Earth Elements by Application (in Metric Tons), 2018-2023
Table 51: Global: Demand of Rare Earth Elements by Application (in Metric Tons), 2024-2032
Table 52: Global: Demand of Rare Earth Elements for Magnets (in Metric Tons), 2018-2023
Table 53: Global: Demand of Rare Earth Elements for Magnets (in Metric Tons), 2024-2032
Table 54: Global: Demand of Rare Earth Elements for NiMH Batteries (in Metric Tons), 2018-2023
Table 55: Global: Demand of Rare Earth Elements for NiMH Batteries (in Metric Tons), 2024-2032
Table 56: Global: Demand of Rare Earth Elements for Auto Catalysts (in Metric Tons), 2018-2023
Table 57: Global: Demand of Rare Earth Elements for Auto Catalysts (in Metric Tons), 2024-2032
Table 58: Global: Demand of Rare Earth Elements for Diesel Engines (in Metric Tons), 2018-2023
Table 59: Global: Demand of Rare Earth Elements for Diesel Engines (in Metric Tons), 2024-2032
Table 60: Global: Demand of Rare Earth Elements for FCC (in Metric Tons), 2018-2023
Table 61: Global: Demand of Rare Earth Elements for FCC (in Metric Tons), 2024-2032
Table 62: Global: Demand of Rare Earth Elements for Phosphers (in Metric Tons), 2018-2023
Table 63: Global: Demand of Rare Earth Elements for Phosphers (in Metric Tons), 2024-2032
Table 64: Global: Demand of Rare Earth Elements for Glass (in Metric Tons), 2018-2023
Table 65: Global: Demand of Rare Earth Elements for Glass (in Metric Tons), 2024-2032
Table 66: Global: Demand of Rare Earth Elements for Polishing Powders (in Metric Tons), 2018-2023
Table 67: Global: Demand of Rare Earth Elements for Polishing Powders (in Metric Tons), 2024-2032
Table 68: Global: Demand of Rare Earth Elements for Other Applications (in Metric Tons), 2018-2023
Table 69: Global: Demand of Rare Earth Elements for Other Applications (in Metric Tons), 2024-2032
Table 70: Rare Earth Elements Processing Costs (US$/lb, TREO)
Table 71: Mill Operating Costs (US$/lb, TREO)
Table 72: Extraction/ Separation Plant Operating Costs (US$/lb, TREO)
Table 73: Substitution Possibilities in Rare Earth Elements
Table 74: Material Shortfall Strategies by Rare Earth Reserve Rich Countries
Table 75: Material Shortfall Strategies by Countries Not Having Rich Rare Earth Reserves

 

ページTOPに戻る

ご注文は、お電話またはWEBから承ります。お見積もりの作成もお気軽にご相談ください。

webからのご注文・お問合せはこちらのフォームから承ります

本レポートと同分野(ケミカル)の最新刊レポート

IMARC Services Private Limited.社のケミカル・マテリアル分野での最新刊レポート

本レポートと同じKEY WORD()の最新刊レポート

  • 本レポートと同じKEY WORDの最新刊レポートはありません。

よくあるご質問


IMARC Services Private Limited.社はどのような調査会社ですか?


インドに調査拠点を持つ調査会社。幅広い分野をカバーしていますがケミカルに特に焦点を当てています。 もっと見る


調査レポートの納品までの日数はどの程度ですか?


在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。


注文の手続きはどのようになっていますか?


1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。


お支払方法の方法はどのようになっていますか?


納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。


データリソース社はどのような会社ですか?


当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。



詳細検索

このレポートへのお問合せ

03-3582-2531

電話お問合せもお気軽に

 

2024/11/22 10:26

155.52 円

163.34 円

198.56 円

ページTOPに戻る