Green Hydrogen Production & Electrolyzer Market 2024-2034: Technologies, Players, Forecastsグリーン水素製造・電解槽市場 2024-2034:技術、プレーヤー、予測 この調査レポートは、電解槽システムとスタックのサプライヤーの包括的なリストを提供し、主要技術にわたる商用システムのシステム仕様について詳細に調査・分析しています。 主な掲載内容(... もっと見る
※ 調査会社の事情により、予告なしに価格が変更になる場合がございます。
Summary
この調査レポートは、電解槽システムとスタックのサプライヤーの包括的なリストを提供し、主要技術にわたる商用システムのシステム仕様について詳細に調査・分析しています。
主な掲載内容(目次より抜粋)
Report Summary
IDTechEx forecasts the annual water electrolyzer market value to exceed US$70 billion by 2034, representing a CAGR of 40.7% over 2024-2034. This growth is driven by the increasing focus from companies and governments on developing green hydrogen plants to decarbonize hard-to-abate industries. Hydrogen demand is expected to grow globally from incumbent applications, including refining and ammonia production, as well as from new markets such as in methanol, green steel, and transport applications. Additional growth drivers include the continued development and innovation of water electrolysis technologies and installation of large electrolyzer manufacturing capacities worldwide.
Continuing its exploration of the green hydrogen space, IDTechEx has updated its Green Hydrogen Production: Electrolyzer Markets 2023 report for 2024, building on existing research. This latest edition delves deeper into the four principal technologies (AWE, PEMEL, AEMEL, and SOEC), offering a comprehensive analysis of their operating principles, system performance characteristics, materials and components, and balance of plant requirements (BOP). It also provides case studies of systems, along with a critical evaluation of the technologies' relative strengths and weaknesses. The report provides a comprehensive list of electrolyzer system and stack suppliers, detailing system specifications of commercial systems across the key technologies. Additionally, it includes green project case studies, examines business models, and presents a nuanced view of the factors influencing the cost of green hydrogen production. Accompanying this report is a database featuring electrolyzer suppliers, specifications of commercial systems, and an overview of planned electrolyzer manufacturing installations.
The need for green hydrogen and advanced electrolyzer technologies
Global activities in the hydrogen sector have intensified, with a drive from governments, industries, and corporations to transition to a hydrogen economy for decarbonizing sectors that are difficult to electrify directly. Green hydrogen - produced through water electrolysis powered by renewable energy - has emerged as a key decarbonization solution, propelled by governmental ambitions to establish substantial gigawatt (GW) scale electrolyzer manufacturing and green hydrogen production capacities by the end of this decade.
The pivot to green hydrogen goes further than the goal of low-carbon hydrogen production to replace existing grey hydrogen sites - it is a strategic move to decarbonize industries where electrification is not feasible, such as heavy industry (e.g. petroleum refining) and various transportation sectors (e.g. shipping). These sectors, crucial yet challenging in terms of emissions reduction, can leverage hydrogen as a potent and clean energy vector. Additionally, the integration of green hydrogen into the energy mix could enhance energy security and pave the way for new market opportunities in renewable energy storage and coupling of various sectors.
Nonetheless, green hydrogen faces many commercial and technical challenges. Among the key hurdles are access to cheap renewable energy with high capacity factors as well as low-cost, efficient and durable electrolyzer systems. The latter necessitates improvement and development of advanced electrolyzer technologies. Moreover, projects need to demonstrate viable business cases and models, which is especially challenging for newer hydrogen applications like renewable energy storage. The report sheds light on some additional challenges.
Overview of the green hydrogen plant and types of water electrolyzer technology. Source: IDTechEx
Electrolyzer technology
There are four main types of electrolyzer technology that can be used to produce green hydrogen: alkaline water (AWE or AEL), proton exchange membrane (PEMEL or PEMWE), anion exchange membrane (AEMEL or AEMWE) and solid oxide electrolyzers (SOEC or SOEL). Each technology comes with its own set of performance characteristics, commercial maturity and various advantages and limitations. This report provides an analysis and comparison of the different electrolyzer systems available, covering working mechanisms, materials employed, and system performance, amongst other factors.
Alkaline water electrolyzers (AWE) have long been commercial and used for industrial applications. They are characterized by their lowest capital costs (CapEx) as well as longer stack lifetimes compared to other technologies and are the most mature in terms of manufacturing. PEM electrolyzers (PEMEL) have higher power densities, output hydrogen pressures and faster response times than alkaline systems. This generally makes them better suited to coupling with renewable energy sources directly. PEMEL systems previously lagged behind AWE commercially but are now ready to compete in green hydrogen project installations.
SOEC is a relatively recent electrolyzer technology to reach commercial deployment, driven by advancements in solid oxide fuel cells (SOFC). Operating at high temperatures (>600°C), they offer higher system efficiencies but are expensive and require further improvements. However, their higher temperatures and efficiency compared to low-temperature technologies offer several advantages. For example, SOEC systems can reuse waste process heat and co-electrolyzer H2O and CO2 producing syngas, which makes them well-suited for coupling with industrial applications.
AEMEL is the youngest and least commercially mature technology on the market. AEMEL aims to combine the benefits of AWE and PEMEL systems - low-cost and abundant materials of AWE with the higher efficiencies and dynamic response rates of PEMEL. The number of players developing AEMEL is limited, but it is likely to gain more market players and presence in commercial green hydrogen projects.
While this report focuses on the four technologies discussed above, IDTechEx has also identified novel and alternative electrolyzer technologies. These include CO2, seawater and other novel electrolyzers, such as photoelectrochemical electrolysis. This report provides an overview of these technologies and their commercial development.
Electrolyzer market, manufacturing capacities, commercial system specifications, system & project case studies
IDTechEx has identified many suppliers for the four main electrolyzer technologies, providing lists of players split by technology and region. Manufacturing capacity is expected to increase significantly over the next five years as players look to capture a share of this growing market. IDTechEx analysis shows that European and Chinese companies are particularly active in their plans to expand and grow their electrolyzer manufacturing capacities and capabilities. Significant investment into electrolyzer manufacturing is also expected from North American, India, and other players, which are looking to expand market shares.
The electrolyzer market is currently dominated by alkaline (AWE) and PEM electrolyzer manufacturers with comparatively few companies manufacturing or commercializing SOEC and AEMEL systems. However, the similarity between solid oxide electrolyzers and solid oxide fuel cells as well as shared aspects of AEMEL to AWE and PEMEL systems could provide a significant entry point for these technologies into the green hydrogen market. Certainly, growth in the electrolyzer market, across the four electrolyzer types, will be needed to meet ambitious national and regional targets for green and clean hydrogen production.
This report provides a comprehensive analysis of electrolyzer manufacturers and the overall market. This includes analysis of players by region and technology as well as manufacturing capacity, based on announced plans to install electrolyzer manufacturing facilities globally. Key examples of commercial systems and green hydrogen projects using different technologies are also presented.
Another key aspect of this report is the collection of key performance characteristics for electrolyzer systems. Key metrics for comparing and assessing the performance of an electrolyzer system include system scale (e.g. by production rate of H2), system efficiency (kWh/kg or % LHV), response time, dynamic range, hydrogen purity, output pressure, lifetime, and footprint. IDTechEx collected the different specifications for commercial systems.
Ultimately, one of the most important parameters is likely to be levelized cost of hydrogen (LCOH), which is heavily influenced by the price of renewable electricity as well as the capital cost (CapEx) of the green hydrogen plant. IDTechEx's report offers discussions on the interplay between renewable energy, system CapEx and green hydrogen production. Furthermore, it offers a forecast for the price reduction in AWE, PEMEL, AEMEL and SOEC technologies.
IDTechEx forecasts significant growth in the green hydrogen market, both in terms of project installations and electrolyzer manufacturing capacity. This report offers granular 10-year market forecasts in gigawatts (GW) of electrolyzer capacity and US$ billions (US$B) for the key electrolyzer technologies: AWE, PEMEL, AEMEL and SOEC. An outlook and discussion on future electrolyzer technology adoption is also provided alongside improvements and innovations being made to electrolyzer technology as well as regional expectations for electrolyzer installations and comparison to national hydrogen targets.
IDTechEx hydrogen research portfolio
This report draws and expands on IDTechEx's existing research in green hydrogen production. Further information on the hydrogen economy, low-carbon hydrogen production, fuel cells, materials for electrolyzers and fuel cells as well as fuel cell mobility sectors can be found in the reports below:
Key aspects of this report:
Background into the hydrogen economy including: the need for low-carbon & green hydrogen, overview of global policies & regulations, overview of hydrogen certification standards
Analysis of electrolyzer technologies: alkaline water (AWE), proton exchange membrane (PEMEL), anion exchange membrane (AEMEL) and solid oxide (SOEC) electrolyzers. For each technology, IDTechEx provides:
Overview of alternative & novel electrolyzer technologies including CO2, seawater, and other electrolysis types.
Techno-economic considerations & green hydrogen project case studies: renewable energy considerations (e.g. capacity factors), cost of green hydrogen production (CapEx, LCOH), green hydrogen project analysis, key challenges in developing green hydrogen projects.
Electrolyzer market analysis: major business models & recent industry trends, comprehensive analysis of electrolyzer manufacturers (by technology, HQ country) and manufacturing capacities (by company, manufacturing country & technology), company profiles (from start-ups to established players) covering AWE, PEMEL, AEMEL, SOEC and alternative electrolyzer technologies.
Market forecasts: hydrogen demand (Mtpa), annual & cumulative electrolyzer installations by technology (GW), electrolyzer system capital cost (CapEx) forecast by technology (US$/kW), annual & cumulative electrolyzer market (US$B), regional expectations & comparison to national strategy targets.
Table of Contents
|
詳細検索
2024/11/14 10:27 156.77 円 166.04 円 201.95 円 |