炭素回収・利用・貯留(CCUS)の世界市場 2025-2045
Carbon Capture, Utilization, and Storage (CCUS) Global Market 2025-2045
世界がネット・ゼロ・エミッションの達成に向けた取り組みを強化する中、CCUS技術は、排出削減が困難な必須セクターの排出量を削減するための重要なソリューションとして台頭してきている。炭素回収・利用・貯留... もっと見る
Summary As the world intensifies its efforts to achieve net-zero emissions, CCUS technologies are emerging as critical solutions for reducing emissions across essential hard-to-abate sectors sectors. Carbon capture, utilization, and storage (CCUS) refers to technologies that capture CO2 emissions and use or store them, leading to permanent sequestration. CCUS technologies capture carbon dioxide emissions from large power sources, including power generation or industrial facilities that use either fossil fuels or biomass for fuel. CO2 can also be captured directly from the atmosphere. If not utilized onsite, captured CO2 is compressed and transported by pipeline, ship, rail or truck to be used in a range of applications, or injected into deep geological formations (including depleted oil and gas reservoirs or saline formations) which trap th CO2 for permanent storage.
Carbon Capture, Utilization, and Storage (CCUS) Global Market 2025-2045 offers an in-depth analysis offers valuable insights for stakeholders in the energy, industrial, and environmental sectors, as well as policymakers, investors, and researchers seeking to understand the transformative potential of CCUS in the global transition to a low-carbon economy. Report contents include:
-
Analysis of market trends for integrated CCUS solutions, the rise of direct air capture technologies, and the growing interest in CO2 utilization for value-added products.
-
In-depth examination of key CCUS technologies, their current state of development, and future innovations:
-
Carbon Capture:
-
Post-combustion capture
-
Pre-combustion capture
-
Oxy-fuel combustion
-
Direct air capture (DAC)
-
Emerging capture technologies (e.g., membrane-based, cryogenic)
-
Carbon Utilization:
-
CO2-derived fuels and chemicals
-
Building materials and concrete curing
-
Enhanced oil recovery (EOR)
-
Biological utilization (e.g., algae cultivation)
-
Mineralization processes
-
Carbon Storage:
-
Geological sequestration in saline aquifers
-
Depleted oil and gas reservoirs
-
Enhanced oil recovery (EOR) with storage
-
Mineral carbonation
-
Ocean storage (potential future applications)
-
Technology readiness levels (TRLs) of various CCUS approaches, highlighting areas of rapid advancement and identifying potential game-changers in the industry.
-
Global CCUS capacity additions by technology and region
-
CO2 capture volumes by source (power generation, industry, direct air capture)
-
Utilization volumes by application (fuels, chemicals, materials, EOR)
-
Storage volumes by type (geological, mineralization, other)
-
Market size and revenue projections for key CCUS segments
-
Investment trends and capital expenditure forecasts
-
Comprehensive overview of the CCUS industry value chain, from technology providers and equipment manufacturers to project developers and end-users.
-
Detailed profiles of over 300 companies across the CCUS value chain. Companies profiled include Again, Airhive, Aker Carbon Capture, AspiraDAC, Capsol Technologies, Captura, Carbofex Oy, Carbon Blue, CarbonCapture, CarbonFree, Charm Industrial, Climeworks, Exxon Mobil, Graphyte, Holocene, ION Clean Energy, MCI Carbon, Mission Zero, Neustark, Noya, Octavia Carbon, Removr, Sirona Technologies, and Storegga.
-
Analysis of key players' strategies, market positioning, and competitive advantages
-
Assessment of partnerships, mergers, and acquisitions shaping the industry
-
Evaluation of emerging start-ups and innovative technology providers
-
Regional Analysis including current and planned CCUS projects, regulatory frameworks, investment climates, and growth opportunities.
-
Policy and Regulatory Landscape
-
Analysis of global, regional, and national climate policies impacting CCUS
-
Overview of carbon pricing mechanisms and their effect on CCUS economics
-
Examination of incentives, tax credits, and support schemes for CCUS projects
-
Assessment of regulatory frameworks for CO2 transport and storage
-
Projections of future policy developments and their market implications
-
Detailed cost breakdowns for capture, transport, utilization, and storage
-
Analysis of cost reduction trends and projections
-
Comparison of CCUS costs across different applications and technologies
-
Assessment of revenue streams and business models for CCUS projects
-
Evaluation of the role of carbon markets in CCUS economics
-
Challenges and Opportunities including:
-
High capital and operational costs
-
Technological barriers and scale-up issues
-
Public perception and social acceptance
-
Regulatory uncertainty and policy risks
-
Infrastructure development needs
-
Emerging opportunities, such as:
-
Integration with hydrogen production for blue hydrogen
-
Negative emissions technologies (NETs) like BECCS and DACCS
-
Development of CCUS hubs and clusters
-
Novel CO2 utilization pathways in high-value products
-
Potential for CCUS in hard-to-abate sectors
-
Future Outlook and Scenarios including
-
Pace of technological innovation
-
Strength of climate policies and carbon pricing
-
Public acceptance and support for CCUS
-
Integration with other clean energy technologies
-
Global economic trends and energy market dynamics
This comprehensive market report is an essential resource for:
-
Energy and industrial companies exploring CCUS opportunities
-
Technology providers and equipment manufacturers in the CCUS space
-
Project developers and investors in clean energy and climate solutions
-
Policymakers and regulators shaping climate and energy policies
-
Research institutions and academics studying carbon management strategies
-
Environmental organizations and think tanks focused on climate change mitigation
-
Financial institutions and analysts assessing the CCUS market potential
ページTOPに戻る
Table of Contents
1 ABBREVIATIONS 30
2 RESEARCH METHODOLOGY 31
-
2.1 Definition of Carbon Capture, Utilisation and Storage (CCUS) 31
-
2.2 Technology Readiness Level (TRL) 32
3 EXECUTIVE SUMMARY 34
-
3.1 Main sources of carbon dioxide emissions 34
-
3.2 CO2 as a commodity 35
-
3.3 Meeting climate targets 38
-
3.4 Market drivers and trends 38
-
3.5 The current market and future outlook 39
-
3.6 CCUS Industry developments 2020-2024 40
-
3.7 CCUS investments 46
-
3.7.1 Venture Capital Funding 46
-
3.7.1.1 2010-2022 46
-
3.7.1.2 CCUS VC deals 2022-2024 47
-
3.8 Government CCUS initiatives 49
-
3.8.1 North America 49
-
3.8.2 Europe 50
-
3.8.3 Asia 51
-
3.8.3.1 Japan 51
-
3.8.3.2 Singapore 51
-
3.8.3.3 China 51
-
3.9 Market map 53
-
3.10 Commercial CCUS facilities and projects 56
-
3.10.1 Facilities 56
-
3.10.1.1 Operational 56
-
3.10.1.2 Under development/construction 59
-
3.11 CCUS Value Chain 64
-
3.12 Key market barriers for CCUS 65
-
3.13 Carbon pricing 65
-
3.13.1 Compliance Carbon Pricing Mechanisms 66
-
3.13.2 Alternative to Carbon Pricing: 45Q Tax Credits 68
-
3.13.3 Business models 69
-
3.13.4 The European Union Emission Trading Scheme (EU ETS) 70
-
3.13.5 Carbon Pricing in the US 71
-
3.13.6 Carbon Pricing in China 71
-
3.13.7 Voluntary Carbon Markets 72
-
3.13.8 Challenges with Carbon Pricing 73
-
3.14 Global market forecasts 74
-
3.14.1 CCUS capture capacity forecast by end point 74
-
3.14.2 Capture capacity by region to 2045, Mtpa 75
-
3.14.3 Revenues 76
-
3.14.4 CCUS capacity forecast by capture type 76
4 INTRODUCTION 78
-
4.1 What is CCUS? 78
-
4.1.1 Carbon Capture 83
-
4.1.1.1 Source Characterization 83
-
4.1.1.2 Purification 84
-
4.1.1.3 CO2 capture technologies 84
-
4.1.2 Carbon Utilization 87
-
4.1.2.1 CO2 utilization pathways 88
-
4.1.3 Carbon storage 89
-
4.1.3.1 Passive storage 89
-
4.1.3.2 Enhanced oil recovery 90
-
4.2 Transporting CO2 91
-
4.2.1 Methods of CO2 transport 91
-
4.2.1.1 Pipeline 92
-
4.2.1.2 Ship 92
-
4.2.1.3 Road 93
-
4.2.1.4 Rail 93
-
4.2.2 Safety 93
-
4.3 Costs 94
-
4.3.1 Cost of CO2 transport 95
-
4.4 Carbon credits 97
5 CARBON DIOXIDE CAPTURE 98
-
5.1 CO? capture technologies 98
-
5.2 >90% capture rate 100
-
5.3 99% capture rate 100
-
5.4 CO2 capture from point sources 103
-
5.4.1 Energy Availability and Costs 105
-
5.4.2 Power plants with CCUS 106
-
5.4.3 Transportation 107
-
5.4.4 Global point source CO2 capture capacities 107
-
5.4.5 By source 109
-
5.4.6 Blue hydrogen 110
-
5.4.6.1 Steam-methane reforming (SMR) 111
-
5.4.6.2 Autothermal reforming (ATR) 111
-
5.4.6.3 Partial oxidation (POX) 112
-
5.4.6.4 Sorption Enhanced Steam Methane Reforming (SE-SMR) 113
-
5.4.6.5 Pre-Combustion vs. Post-Combustion carbon capture 114
-
5.4.6.6 Blue hydrogen projects 115
-
5.4.6.7 Costs 115
-
5.4.6.8 Market players 117
-
5.4.8 Carbon capture in cement 117
-
5.4.8.1 CCUS Projects 118
-
5.4.8.2 Carbon capture technologies 119
-
5.4.8.3 Costs 120
-
5.4.8.4 Challenges 121
-
5.4.9 Maritime carbon capture 121
-
5.5 Main carbon capture processes 122
-
5.5.1 Materials 122
-
5.5.2 Post-combustion 123
-
5.5.2.1 Chemicals/Solvents 125
-
5.5.2.2 Amine-based post-combustion CO? absorption 126
-
5.5.2.3 Physical absorption solvents 127
-
5.5.3 Oxy-fuel combustion 129
-
5.5.3.1 Oxyfuel CCUS cement projects 131
-
5.5.3.2 Chemical Looping-Based Capture 132
-
5.5.4 Liquid or supercritical CO2: Allam-Fetvedt Cycle 133
-
5.5.5 Pre-combustion 134
-
5.6 Carbon separation technologies 135
-
5.6.1 Absorption capture 136
-
5.6.2 Adsorption capture 140
-
5.6.2.1 Solid sorbent-based CO? separation 141
-
5.6.2.2 Metal organic framework (MOF) adsorbents 143
-
5.6.2.3 Zeolite-based adsorbents 143
-
5.6.2.4 Solid amine-based adsorbents 143
-
5.6.2.5 Carbon-based adsorbents 144
-
5.6.2.6 Polymer-based adsorbents 145
-
5.6.2.7 Solid sorbents in pre-combustion 145
-
5.6.2.8 Sorption Enhanced Water Gas Shift (SEWGS) 146
-
5.6.2.9 Solid sorbents in post-combustion 147
-
5.6.3 Membranes 149
-
5.6.3.1 Membrane-based CO? separation 150
-
5.6.3.2 Post-combustion CO? capture 153
-
5.6.3.2.1 Facilitated transport membranes 153
-
5.6.3.3 Pre-combustion capture 154
-
5.6.4 Liquid or supercritical CO2 (Cryogenic) capture 155
-
5.6.4.1 Cryogenic CO? capture 156
-
5.6.5 Calcium Looping 157
-
5.6.5.1 Calix Advanced Calciner 158
-
5.6.6 Other technologies 158
-
5.6.6.1 LEILAC process 159
-
5.6.6.2 CO? capture with Solid Oxide Fuel Cells (SOFCs) 159
-
5.6.6.3 CO? capture with Molten Carbonate Fuel Cells (MCFCs) 160
-
5.6.6.4 Microalgae Carbon Capture 161
-
5.6.7 Comparison of key separation technologies 162
-
5.6.8 Technology readiness level (TRL) of gas separation technologies 163
-
5.7 Opportunities and barriers 164
-
5.8 Costs of CO2 capture 165
-
5.9 CO2 capture capacity 166
-
5.10 Bioenergy with carbon capture and storage (BECCS) 168
-
5.10.1 Overview of technology 168
-
5.10.2 Biomass conversion 170
-
5.10.3 BECCS facilities 170
-
5.10.4 Challenges 171
-
5.11 Direct air capture (DAC) 172
-
5.11.1 Technology description 172
-
5.11.1.1 Sorbent-based CO2 Capture 172
-
5.11.1.2 Solvent-based CO2 Capture 172
-
5.11.1.3 DAC Solid Sorbent Swing Adsorption Processes 173
-
5.11.1.4 Electro-Swing Adsorption (ESA) of CO2 for DAC 173
-
5.11.1.5 Solid and liquid DAC 174
-
5.11.2 Advantages of DAC 176
-
5.11.3 Deployment 176
-
5.11.4 Point source carbon capture versus Direct Air Capture 177
-
5.11.5 Technologies 178
-
5.11.5.1 Solid sorbents 179
-
5.11.5.2 Liquid sorbents 181
-
5.11.5.3 Liquid solvents 182
-
5.11.5.4 Airflow equipment integration 182
-
5.11.5.5 Passive Direct Air Capture (PDAC) 183
-
5.11.5.6 Direct conversion 183
-
5.11.5.7 Co-product generation 183
-
5.11.5.8 Low Temperature DAC 184
-
5.11.5.9 Regeneration methods 184
-
5.11.6 Electricity and Heat Sources 184
-
5.11.7 Commercialization and plants 185
-
5.11.8 Metal-organic frameworks (MOFs) in DAC 186
-
5.11.9 DAC plants and projects-current and planned 186
-
5.11.10 Capacity forecasts 193
-
5.11.11 Costs 194
-
5.11.12 Market challenges for DAC 200
-
5.11.13 Market prospects for direct air capture 201
-
5.11.14 Players and production 203
-
5.11.15 Co2 utilization pathways 204
-
5.11.16 Markets for Direct Air Capture and Storage (DACCS) 206
-
5.11.16.1 Fuels 206
-
5.11.16.1.1 Overview 206
-
5.11.16.1.2 Production routes 208
-
5.11.16.1.3 Methanol 208
-
5.11.16.1.4 Algae based biofuels 209
-
5.11.16.1.5 CO?-fuels from solar 210
-
5.11.16.1.6 Companies 212
-
5.11.16.1.7 Challenges 214
-
5.11.16.2 Chemicals, plastics and polymers 214
-
5.11.16.2.1 Overview 214
-
5.11.16.2.2 Scalability 215
-
5.11.16.2.3 Plastics and polymers 216
-
5.11.16.2.3.1 CO2 utilization products 217
-
5.11.16.2.4 Urea production 218
-
5.11.16.2.5 Inert gas in semiconductor manufacturing 218
-
5.11.16.2.6 Carbon nanotubes 218
-
5.11.16.2.7 Companies 218
-
5.11.16.3 Construction materials 220
-
5.11.16.3.1 Overview 220
-
5.11.16.3.2 CCUS technologies 221
-
5.11.16.3.3 Carbonated aggregates 223
-
5.11.16.3.4 Additives during mixing 225
-
5.11.16.3.5 Concrete curing 225
-
5.11.16.3.6 Costs 225
-
5.11.16.3.7 Companies 225
-
5.11.16.3.8 Challenges 227
-
5.11.16.4 CO2 Utilization in Biological Yield-Boosting 228
-
5.11.16.4.1 Overview 228
-
5.11.16.4.2 Applications 228
-
5.11.16.4.2.1 Greenhouses 228
-
5.11.16.4.2.2 Algae cultivation 228
-
5.11.16.4.2.3 Microbial conversion 229
-
5.11.16.4.3 Companies 231
-
5.11.16.5 Food and feed production 231
-
5.11.16.6 CO? Utilization in Enhanced Oil Recovery 232
-
5.11.16.6.1 Overview 232
-
5.11.16.6.1.1 Process 233
-
5.11.16.6.1.2 CO? sources 233
-
5.11.16.6.2 CO?-EOR facilities and projects 234
6 CARBON DIOXIDE REMOVAL 236
-
6.1 Conventional CDR on land 236
-
6.1.1 Wetland and peatland restoration 236
-
6.1.2 Cropland, grassland, and agroforestry 236
-
6.2 Technological CDR Solutions 237
-
6.3 Technology Readiness Level (TRL): Carbon Dioxide Removal Methods 237
-
6.4 Carbon Credits 238
-
6.5 Value chain 240
-
6.6 Monitoring, reporting, and verification 241
-
6.7 Government policies 241
-
6.8 BECCS 242
-
6.8.1 Technology overview 243
-
6.8.1.1 Point Source Capture Technologies for BECCS 245
-
6.8.1.2 Energy efficiency 245
-
6.8.1.3 Heat generation 245
-
6.8.1.4 Waste-to-Energy 246
-
6.8.1.5 Blue Hydrogen Production 246
-
6.8.2 Biomass conversion 246
-
6.8.3 CO? capture technologies 247
-
6.8.4 Bioenergy with Carbon Removal and Storage (BiCRS) 249
-
6.8.4.1 Advantages 249
-
6.8.4.2 Challenges 251
-
6.8.4.3 Costs 251
-
6.8.4.4 Feedstocks 253
-
6.8.5 BECCS facilities 254
-
6.8.6 Cost analysis 255
-
6.8.7 BECCS carbon credits 256
-
6.8.8 Sustainability 256
-
6.8.9 Challenges 257
-
6.9 Enhanced Weathering 258
-
6.9.1 Overview 259
-
6.9.1.1 Role of enhanced weathering in carbon dioxide removal 259
-
6.9.1.2 CO? mineralization 260
-
6.9.2 Enhanced Weathering Processes and Materials 260
-
6.9.3 Enhanced Weathering Applications 261
-
6.9.4 Trends and Opportunities 262
-
6.9.5 Challenges and Risks 262
-
6.9.6 Cost analysis 262
-
6.9.7 SWOT analysis 263
-
6.10 Afforestation/Reforestation 264
-
6.10.1 Overview 264
-
6.10.2 Carbon dioxide removal methods 264
-
6.10.3 Remote sensing in A/R 266
-
6.10.4 Robotics 267
-
6.10.5 Trends and Opportunities 268
-
6.10.6 Challenges and Risks 269
-
6.10.7 SWOT analysis 270
-
6.11 Soil carbon sequestration (SCS) 271
-
6.11.1 Overview 271
-
6.11.2 Practices 271
-
6.11.3 Measuring and Verifying 273
-
6.11.4 Trends and Opportunities 274
-
6.11.5 Carbon credits 275
-
6.11.6 Challenges and Risks 276
-
6.11.7 SWOT analysis 276
-
6.12 Biochar 278
-
6.12.1 What is biochar? 279
-
6.12.2 Carbon sequestration 280
-
6.12.3 Properties of biochar 281
-
6.12.4 Feedstocks 283
-
6.12.5 Production processes 284
-
6.12.5.1 Sustainable production 284
-
6.12.5.2 Pyrolysis 285
-
6.12.5.2.1 Slow pyrolysis 285
-
6.12.5.2.2 Fast pyrolysis 286
-
6.12.5.3 Gasification 287
-
6.12.5.4 Hydrothermal carbonization (HTC) 287
-
6.12.5.5 Torrefaction 288
-
6.12.5.6 Equipment manufacturers 288
-
6.12.6 Biochar pricing 289
-
6.12.7 Biochar carbon credits 290
-
6.12.7.1 Overview 290
-
6.12.7.2 Removal and reduction credits 290
-
6.12.7.3 The advantage of biochar 290
-
6.12.7.4 Prices 291
-
6.12.7.5 Buyers of biochar credits 291
-
6.12.7.6 Competitive materials and technologies 292
-
6.12.8 Bio-oil based CDR 292
-
6.12.9 Biomass burial for CO? removal 293
-
6.12.10 Bio-based construction materials for CDR 294
-
6.12.11 SWOT analysis 296
-
6.13 Ocean-based CDR 297
-
6.13.1 Overview 297
-
6.13.2 Ocean pumps 298
-
6.13.3 CO? capture from seawater 299
-
6.13.4 Ocean fertilisation 299
-
6.13.5 Coastal blue carbon 301
-
6.13.6 Algal cultivation 302
-
6.13.7 Artificial upwelling 302
-
6.13.8 MRV for marine CDR 303
-
6.13.9 Ocean alkalinisation 304
-
6.13.10 Ocean alkalinity enhancement (OAE) 305
-
6.13.11 Electrochemical ocean alkalinity enhancement 305
-
6.13.12 Direct ocean capture technology 306
-
6.13.13 Artificial downwelling 307
-
6.13.14 Trends and Opportunities 307
-
6.13.15 Ocean-based carbon credits 307
-
6.13.16 Cost analysis 308
-
6.13.17 Challenges and Risks 309
-
6.13.18 SWOT analysis 309
7 CARBON DIOXIDE UTILIZATION 310
-
7.1 Overview 311
-
7.1.1 Current market status 311
-
7.2 Carbon utilization business models 316
-
7.2.1 Benefits of carbon utilization 317
-
7.2.2 Market challenges 319
-
7.3 Co2 utilization pathways 320
-
7.4 Conversion processes 322
-
7.4.1 Thermochemical 322
-
7.4.1.1 Process overview 323
-
7.4.1.2 Plasma-assisted CO2 conversion 325
-
7.4.2 Electrochemical conversion of CO2 326
-
7.4.2.1 Process overview 327
-
7.4.3 Photocatalytic and photothermal catalytic conversion of CO2 328
-
7.4.4 Catalytic conversion of CO2 329
-
7.4.5 Biological conversion of CO2 329
-
7.4.6 Copolymerization of CO2 332
-
7.4.7 Mineral carbonation 334
-
7.5 CO2-derived products 337
-
7.5.1 Fuels 337
-
7.5.1.1 Overview 338
-
7.5.1.2 Production routes 340
-
7.5.1.3 CO? -fuels in road vehicles 341
-
7.5.1.4 CO? -fuels in shipping 342
-
7.5.1.5 CO? -fuels in aviation 342
-
7.5.1.6 Power-to-methane 342
-
7.5.1.6.1 Biological fermentation 343
-
7.5.1.6.2 Costs 343
-
7.5.1.7 Algae based biofuels 346
-
7.5.1.8 CO?-fuels from solar 347
-
7.5.1.9 Companies 349
-
7.5.1.10 Challenges 351
-
7.5.2 Chemicals and polymers 351
-
7.5.2.1 Polycarbonate from CO? 352
-
7.5.2.2 Carbon nanostructures 352
-
7.5.2.3 Scalability 354
-
7.5.2.4 Applications 355
-
7.5.2.4.1 Urea production 355
-
7.5.2.4.2 CO?-derived polymers 355
-
7.5.2.4.3 Inert gas in semiconductor manufacturing 356
-
7.5.2.4.4 Carbon nanotubes 356
-
7.5.2.5 Companies 357
-
7.5.3 Construction materials 358
-
7.5.3.1 Overview 358
-
7.5.3.2 CCUS technologies 361
-
7.5.3.3 Carbonated aggregates 364
-
7.5.3.4 Additives during mixing 365
-
7.5.3.5 Concrete curing 366
-
7.5.3.6 Costs 366
-
7.5.3.7 Market trends and business models 367
-
7.5.3.8 Companies 370
-
7.5.3.9 Challenges 371
-
7.5.4 CO2 Utilization in Biological Yield-Boosting 372
-
7.5.4.1 Overview 372
-
7.5.4.2 Applications 372
-
7.5.4.2.1 Greenhouses 372
-
7.5.4.2.2 Algae cultivation 372
-
7.5.4.2.2.1 CO?-enhanced algae cultivation: open systems 373
-
7.5.4.2.2.2 CO?-enhanced algae cultivation: closed systems 373
-
7.5.4.2.3 Microbial conversion 375
-
7.5.4.2.4 Food and feed production 376
-
7.5.4.3 Companies 376
-
7.6 CO? Utilization in Enhanced Oil Recovery 377
-
7.6.1 Overview 377
-
7.6.1.1 Process 378
-
7.6.1.2 CO? sources 379
-
7.6.2 CO?-EOR facilities and projects 379
-
7.6.3 Challenges 381
-
7.7 Enhanced mineralization 381
-
7.7.1 Advantages 381
-
7.7.2 In situ and ex-situ mineralization 382
-
7.7.3 Enhanced mineralization pathways 382
-
7.7.4 Challenges 383
8 CARBON DIOXIDE STORAGE 385
-
8.1 Introduction 385
-
8.2 CO2 storage sites 387
-
8.2.1 Storage types for geologic CO2 storage 388
-
8.2.2 Oil and gas fields 389
-
8.2.3 Saline formations 391
-
8.2.4 Coal seams and shale 393
-
8.2.5 Basalts and ultra-mafic rocks 394
-
8.3 CO? leakage 395
-
8.4 Global CO2 storage capacity 396
-
8.5 CO? Storage Projects 400
-
8.6 CO? -EOR 402
-
8.6.1 Description 402
-
8.6.2 Injected CO? 403
-
8.6.3 CO? capture with CO? -EOR facilities 404
-
8.6.4 Companies 405
-
8.6.5 Economics 405
-
8.7 Costs 406
-
8.8 Challenges 407
9 CARBON DIOXIDE TRANSPORTATION 408
-
9.1 Introduction 408
-
9.2 CO? transportation methods and conditions 408
-
9.3 CO? transportation by pipeline 409
-
9.4 CO? transportation by ship 410
-
9.5 CO? transportation by rail and truck 411
-
9.6 Cost analysis of different methods 411
-
9.7 Companies 412
10 COMPANY PROFILES 414 (310 company profiles)
11 REFERENCES 617
ページTOPに戻る
List of Tables/Graphs
List of Tables
-
Table 1. Technology Readiness Level (TRL) Examples. 32
-
Table 2. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends. 38
-
Table 3. Carbon capture, usage, and storage (CCUS) industry developments 2020-2024. 40
-
Table 4. CCUS VC deals 2022-2024. 46
-
Table 5. CCUS government funding and investment-10 year outlook. 48
-
Table 6. Demonstration and commercial CCUS facilities in China. 51
-
Table 7. Global commercial CCUS facilities-in operation. 56
-
Table 8. Global commercial CCUS facilities-under development/construction. 59
-
Table 9. Key market barriers for CCUS. 65
-
Table 10. Key compliance carbon pricing initiatives around the world. 66
-
Table 11. CCUS business models: full chain, part chain, and hubs and clusters. 69
-
Table 12. CCUS capture capacity forecast by CO? endpoint, Mtpa of CO?, to 2045. 75
-
Table 13. Capture capacity by region to 2045, Mtpa. 75
-
Table 14. CCUS revenue potential for captured CO? offtaker, billion US $ to 2045. 76
-
Table 15. CCUS capacity forecast by capture type, Mtpa of CO?, to 2045. 76
-
Table 16. Point-source CCUS capture capacity forecast by CO? source sector, Mtpa of CO?, to 2045. 76
-
Table 17. CO2 utilization and removal pathways 79
-
Table 18. Approaches for capturing carbon dioxide (CO2) from point sources. 83
-
Table 19. CO2 capture technologies. 84
-
Table 20. Advantages and challenges of carbon capture technologies. 85
-
Table 21. Overview of commercial materials and processes utilized in carbon capture. 86
-
Table 22. Methods of CO2 transport. 92
-
Table 23. Carbon capture, transport, and storage cost per unit of CO2 94
-
Table 24. Estimated capital costs for commercial-scale carbon capture. 94
-
Table 25. Comparison of CO? capture technologies. 98
-
Table 26. Typical conditions and performance for different capture technologies. 99
-
Table 27. PSCC technologies. 103
-
Table 28. Point source examples. 103
-
Table 29. Comparison of point-source CO? capture systems 104
-
Table 30. Blue hydrogen projects. 115
-
Table 31. Commercial CO? capture systems for blue H2. 116
-
Table 32. Market players in blue hydrogen. 117
-
Table 33. CCUS Projects in the Cement Sector. 118
-
Table 34. Carbon capture technologies in the cement sector. 119
-
Table 35. Cost and technological status of carbon capture in the cement sector. 120
-
Table 36. Assessment of carbon capture materials 122
-
Table 37. Chemical solvents used in post-combustion. 125
-
Table 38. Comparison of key chemical solvent-based systems. 126
-
Table 39. Chemical absorption solvents used in current operational CCUS point-source projects. 127
-
Table 40.Comparison of key physical absorption solvents. 127
-
Table 41.Physical solvents used in current operational CCUS point-source projects. 128
-
Table 42.Emerging solvents for carbon capture 129
-
Table 43. Oxygen separation technologies for oxy-fuel combustion. 130
-
Table 44. Large-scale oxyfuel CCUS cement projects. 131
-
Table 45. Commercially available physical solvents for pre-combustion carbon capture. 135
-
Table 46. Main capture processes and their separation technologies. 135
-
Table 47. Absorption methods for CO2 capture overview. 136
-
Table 48. Commercially available physical solvents used in CO2 absorption. 138
-
Table 49. Adsorption methods for CO2 capture overview. 140
-
Table 50. Solid sorbents explored for carbon capture. 142
-
Table 51. Carbon-based adsorbents for CO? capture. 144
-
Table 52. Polymer-based adsorbents. 145
-
Table 53. Solid sorbents for post-combustion CO? capture. 147
-
Table 54. Emerging Solid Sorbent Systems. 148
-
Table 55. Membrane-based methods for CO2 capture overview. 149
-
Table 56. Comparison of membrane materials for CCUS 151
-
Table 57.Commercial status of membranes in carbon capture 152
-
Table 58. Membranes for pre-combustion capture. 154
-
Table 59. Status of cryogenic CO? capture technologies. 156
-
Table 60. Benefits and drawbacks of microalgae carbon capture. 161
-
Table 61. Comparison of main separation technologies. 162
-
Table 62. Technology readiness level (TRL) of gas separation technologies 163
-
Table 63. Opportunities and Barriers by sector. 164
-
Table 64. Existing and planned capacity for sequestration of biogenic carbon. 170
-
Table 65. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 171
-
Table 66. DAC technologies. 173
-
Table 67. Advantages and disadvantages of DAC. 175
-
Table 68. Advantages of DAC as a CO2 removal strategy. 176
-
Table 69. Companies developing airflow equipment integration with DAC. 183
-
Table 70. Companies developing Passive Direct Air Capture (PDAC) technologies. 183
-
Table 71. Companies developing regeneration methods for DAC technologies. 184
-
Table 72. DAC companies and technologies. 185
-
Table 73. DAC technology developers and production. 187
-
Table 74. DAC projects in development. 192
-
Table 75. DACCS carbon removal capacity forecast (million metric tons of CO? per year), 2024-2045, base case. 193
-
Table 76. DACCS carbon removal capacity forecast (million metric tons of CO? per year), 2030-2045, optimistic case. 193
-
Table 77. Costs summary for DAC. 194
-
Table 78. Typical cost contributions of the main components of a DACCS system. 195
-
Table 79. Cost estimates of DAC. 199
-
Table 80. Challenges for DAC technology. 200
-
Table 81. DAC companies and technologies. 203
-
Table 82. Example CO2 utilization pathways. 204
-
Table 83. Markets for Direct Air Capture and Storage (DACCS). 206
-
Table 84. Market overview for CO2 derived fuels. 206
-
Table 85. Microalgae products and prices. 210
-
Table 86. Main Solar-Driven CO2 Conversion Approaches. 211
-
Table 87. Companies in CO2-derived fuel products. 212
-
Table 88. Commodity chemicals and fuels manufactured from CO2. 215
-
Table 89. CO2 utilization products developed by chemical and plastic producers. 217
-
Table 90. Companies in CO2-derived chemicals products. 218
-
Table 91. Carbon capture technologies and projects in the cement sector 221
-
Table 92. Companies in CO2 derived building materials. 225
-
Table 93. Market challenges for CO2 utilization in construction materials. 227
-
Table 94. Companies in CO2 Utilization in Biological Yield-Boosting. 231
-
Table 95. CO2 sequestering technologies and their use in food. 232
-
Table 96. Applications of CCS in oil and gas production. 232
-
Table 97. Benchmarking comparison of various CDR technologies based on key parameters. 237
-
Table 98. DACCS carbon credit revenue forecast (million US$), 2024-2045. 239
-
Table 99. CDR Value Chain. 240
-
Table 100. CO? capture technologies for BECCS. 247
-
Table 101. Feedstocks for Bioenergy with Carbon Removal and Storage (BiCRS): 253
-
Table 102. Existing and planned capacity for sequestration of biogenic carbon. 254
-
Table 103. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 254
-
Table 104. Challenges of BECCS 257
-
Table 105.Comparison of enhanced weathering materials 261
-
Table 106. Enhanced Weathering Applications. 261
-
Table 107. Trends and opportunities in enhanced weathering. 262
-
Table 108. Challenges and risks in enhanced weathering. 262
-
Table 109. Nature-based CDR approaches. 264
-
Table 110. Companies in robotics in afforestation/reforestation. 267
-
Table 111. Comparison of A/R and BECCS. 268
-
Table 112. Trends and Opportunities in afforestation/reforestation. 268
-
Table 113. Challenges and risks in afforestation/reforestation. 269
-
Table 114. Soil carbon sequestration practices. 271
-
Table 115. Soil sampling and analysis methods. 273
-
Table 116. Remote sensing and modeling techniques. 273
-
Table 117. Carbon credit protocols and standards. 273
-
Table 118. Trends and opportunities in soil carbon sequestration (SCS). 274
-
Table 119. Key aspects of soil carbon credits. 275
-
Table 120. Challenges and Risks in SCS. 276
-
Table 121. Summary of key properties of biochar. 281
-
Table 122. Biochar physicochemical and morphological properties 281
-
Table 123. Biochar feedstocks-source, carbon content, and characteristics. 283
-
Table 124. Biochar production technologies, description, advantages and disadvantages. 284
-
Table 125. Comparison of slow and fast pyrolysis for biomass. 287
-
Table 126. Comparison of thermochemical processes for biochar production. 288
-
Table 127. Biochar production equipment manufacturers. 289
-
Table 128. Competitive materials and technologies that can also earn carbon credits. 292
-
Table 129. Bio-oil-based CDR pros and cons. 293
-
Table 130. Ocean-based CDR methods. 297
-
Table 131. Benchmarking of ocean-based CDR methods: 299
-
Table 132.Ocean-based CDR: biotic methods. 300
-
Table 133. Technology in direct ocean capture. 306
-
Table 134. Future direct ocean capture technologies. 306
-
Table 135. Trends and opportunities in ocean-based CDR. 307
-
Table 136. Challenges and risks in ocean-based CDR. 309
-
Table 137. Carbon utilization revenue forecast by product (US$). 314
-
Table 138. Carbon utilization business models. 316
-
Table 139. CO2 utilization and removal pathways. 317
-
Table 140. Market challenges for CO2 utilization. 319
-
Table 141. Example CO2 utilization pathways. 320
-
Table 142. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages. 323
-
Table 143. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages. 327
-
Table 144. CO2 derived products via biological conversion-applications, advantages and disadvantages. 331
-
Table 145. Companies developing and producing CO2-based polymers. 333
-
Table 146. Companies developing mineral carbonation technologies. 335
-
Table 147. Comparison of emerging CO? utilization applications. 336
-
Table 148. Main routes to CO?-fuels. 337
-
Table 149. Market overview for CO2 derived fuels. 338
-
Table 150. Main routes to CO? -fuels 340
-
Table 151. Power-to-Methane projects. 344
-
Table 152. Microalgae products and prices. 347
-
Table 153. Main Solar-Driven CO2 Conversion Approaches. 348
-
Table 154. Companies in CO2-derived fuel products. 349
-
Table 155. Commodity chemicals and fuels manufactured from CO2. 354
-
Table 156. Companies in CO2-derived chemicals products. 357
-
Table 157. Carbon capture technologies and projects in the cement sector 362
-
Table 158. Prefabricated versus ready-mixed concrete markets . 365
-
Table 159. CO? utilization business models in building materials. 367
-
Table 160. Companies in CO2 derived building materials. 370
-
Table 161. Market challenges for CO2 utilization in construction materials. 371
-
Table 162. Companies in CO2 Utilization in Biological Yield-Boosting. 376
-
Table 163. Applications of CCS in oil and gas production. 377
-
Table 164. CO2 EOR/Storage Challenges. 384
-
Table 165. Storage and utilization of CO2. 385
-
Table 166. Mechanisms of subsurface CO? trapping. 387
-
Table 167. Global depleted reservoir storage projects. 388
-
Table 168. Global CO2 ECBM storage projects. 389
-
Table 169. CO2 EOR/storage projects. 390
-
Table 170. Global storage sites-saline aquifer projects. 392
-
Table 171. Global storage capacity estimates, by region. 396
-
Table 172. MRV Technologies and Costs in CO? Storage. 399
-
Table 173. Carbon storage challenges. 399
-
Table 174. Status of CO? Storage Projects. 400
-
Table 175. Types of CO? -EOR designs. 403
-
Table 176. CO? capture with CO? -EOR facilities. 404
-
Table 177. CO? -EOR companies. 405
-
Table 178. Phases of CO? for transportation. 408
-
Table 179. CO? transportation methods and conditions. 408
-
Table 180. Status of CO? transportation methods in CCS projects. 409
-
Table 181. CO? pipelines Technical challenges. 409
-
Table 182. Cost comparison of CO? transportation methods 411
-
Table 183. CO? transport operators. 412
List of Figures
-
Figure 1. Carbon emissions by sector. 34
-
Figure 2. Overview of CCUS market 36
-
Figure 3. CCUS business model. 37
-
Figure 4. Pathways for CO2 use. 38
-
Figure 5. Regional capacity share 2023-2033. 40
-
Figure 6. Global investment in carbon capture 2010-2023, millions USD. 46
-
Figure 7. Carbon Capture, Utilization, & Storage (CCUS) Market Map. 55
-
Figure 8. CCS deployment projects, historical and to 2035. 56
-
Figure 9. Existing and planned CCS projects. 64
-
Figure 10. CCUS Value Chain. 64
-
Figure 11. Schematic of CCUS process. 78
-
Figure 12. Pathways for CO2 utilization and removal. 79
-
Figure 13. A pre-combustion capture system. 84
-
Figure 14. Carbon dioxide utilization and removal cycle. 88
-
Figure 15. Various pathways for CO2 utilization. 89
-
Figure 16. Example of underground carbon dioxide storage. 90
-
Figure 17. Transport of CCS technologies. 91
-
Figure 18. Railroad car for liquid CO? transport 93
-
Figure 19. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector. 95
-
Figure 20. Cost of CO2 transported at different flowrates 96
-
Figure 21. Cost estimates for long-distance CO2 transport. 97
-
Figure 22. CO2 capture and separation technology. 98
-
Figure 23. Global capacity of point-source carbon capture and storage facilities. 108
-
Figure 24. Global carbon capture capacity by CO2 source, 2023. 109
-
Figure 25. Global carbon capture capacity by CO2 source, 2040. 110
-
Figure 26. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS). 111
-
Figure 27. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant. 112
-
Figure 28. POX process flow diagram. 113
-
Figure 29. Process flow diagram for a typical SE-SMR. 114
-
Figure 30. Post-combustion carbon capture process. 124
-
Figure 31. Post-combustion CO2 Capture in a Coal-Fired Power Plant. 124
-
Figure 32. Oxy-combustion carbon capture process. 130
-
Figure 33. Process schematic of chemical looping. 133
-
Figure 34. Liquid or supercritical CO2 carbon capture process. 134
-
Figure 35. Pre-combustion carbon capture process. 135
-
Figure 36. Amine-based absorption technology. 138
-
Figure 37. Pressure swing absorption technology. 142
-
Figure 38. Membrane separation technology. 150
-
Figure 39. Liquid or supercritical CO2 (cryogenic) distillation. 156
-
Figure 40. Cryocap™ process. 157
-
Figure 41. Calix advanced calcination reactor. 158
-
Figure 42. LEILAC process. 159
-
Figure 43. Fuel Cell CO2 Capture diagram. 160
-
Figure 44. Microalgal carbon capture. 161
-
Figure 45. Cost of carbon capture. 166
-
Figure 46. CO2 capture capacity to 2030, MtCO2. 167
-
Figure 47. Capacity of large-scale CO2 capture projects, current and planned vs. the Net?Zero Scenario,?2020-2030. 168
-
Figure 48. Bioenergy with carbon capture and storage (BECCS) process. 169
-
Figure 49. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 175
-
Figure 50. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 175
-
Figure 51. Potential for DAC removal versus other carbon removal methods. 177
-
Figure 52. DAC technologies. 178
-
Figure 53. Schematic of Climeworks DAC system. 179
-
Figure 54. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 180
-
Figure 55. Flow diagram for solid sorbent DAC. 180
-
Figure 56. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 182
-
Figure 57. Global capacity of direct air capture facilities. 187
-
Figure 58. Global map of DAC and CCS plants. 192
-
Figure 59. Schematic of costs of DAC technologies. 197
-
Figure 60. DAC cost breakdown and comparison. 198
-
Figure 61. Operating costs of generic liquid and solid-based DAC systems. 200
-
Figure 62. Co2 utilization pathways and products. 205
-
Figure 63. Conversion route for CO2-derived fuels and chemical intermediates. 207
-
Figure 64. Conversion pathways for CO2-derived methane, methanol and diesel. 208
-
Figure 65. CO2 feedstock for the production of e-methanol. 209
-
Figure 66. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 211
-
Figure 67. Audi synthetic fuels. 212
-
Figure 68. Conversion of CO2 into chemicals and fuels via different pathways. 215
-
Figure 69. Conversion pathways for CO2-derived polymeric materials 216
-
Figure 70. Conversion pathway for CO2-derived building materials. 221
-
Figure 71. Schematic of CCUS in cement sector. 221
-
Figure 72. Carbon8 Systems’ ACT process. 224
-
Figure 73. CO2 utilization in the Carbon Cure process. 224
-
Figure 74. Algal cultivation in the desert. 229
-
Figure 75. Example pathways for products from cyanobacteria. 230
-
Figure 76. Typical Flow Diagram for CO2 EOR. 233
-
Figure 77. Large CO2-EOR projects in different project stages by industry. 235
-
Figure 78. Bioenergy with carbon capture and storage (BECCS) process. 244
-
Figure 79. SWOT analysis: enhanced weathering. 264
-
Figure 80. SWOT analysis: afforestation/reforestation. 270
-
Figure 81. SWOT analysis: SCS. 277
-
Figure 82. Schematic of biochar production. 278
-
Figure 83. Biochars from different sources, and by pyrolyzation at different temperatures. 279
-
Figure 84. Compressed biochar. 283
-
Figure 85. Biochar production diagram. 284
-
Figure 86. Pyrolysis process and by-products in agriculture. 286
-
Figure 87. SWOT analysis: Biochar for CDR. 296
-
Figure 88. SWOT analysis: ocean-based CDR. 310
-
Figure 89. CO2 non-conversion and conversion technology, advantages and disadvantages. 311
-
Figure 90. Applications for CO2. 313
-
Figure 91. Cost to capture one metric ton of carbon, by sector. 314
-
Figure 92. Life cycle of CO2-derived products and services. 319
-
Figure 93. Co2 utilization pathways and products. 322
-
Figure 94. Plasma technology configurations and their advantages and disadvantages for CO2 conversion. 326
-
Figure 95. Electrochemical CO? reduction products. 326
-
Figure 96. LanzaTech gas-fermentation process. 330
-
Figure 97. Schematic of biological CO2 conversion into e-fuels. 330
-
Figure 98. Econic catalyst systems. 333
-
Figure 99. Mineral carbonation processes. 335
-
Figure 100. Conversion route for CO2-derived fuels and chemical intermediates. 339
-
Figure 101. Conversion pathways for CO2-derived methane, methanol and diesel. 340
-
Figure 102. CO2 feedstock for the production of e-methanol. 346
-
Figure 103. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 348
-
Figure 104. Audi synthetic fuels. 349
-
Figure 105. Conversion of CO2 into chemicals and fuels via different pathways. 354
-
Figure 106. Conversion pathways for CO2-derived polymeric materials 356
-
Figure 107. Conversion pathway for CO2-derived building materials. 359
-
Figure 108. Schematic of CCUS in cement sector. 360
-
Figure 109. Carbon8 Systems’ ACT process. 364
-
Figure 110. CO2 utilization in the Carbon Cure process. 365
-
Figure 111. Algal cultivation in the desert. 373
-
Figure 112. Example pathways for products from cyanobacteria. 375
-
Figure 113. Typical Flow Diagram for CO2 EOR. 378
-
Figure 114. Large CO2-EOR projects in different project stages by industry. 380
-
Figure 115. Carbon mineralization pathways. 383
-
Figure 116. CO2 Storage Overview - Site Options 388
-
Figure 117. CO2 injection into a saline formation while producing brine for beneficial use. 391
-
Figure 118. Subsurface storage cost estimation. 407
-
Figure 119. Air Products production process. 420
-
Figure 120. Aker carbon capture system. 424
-
Figure 121. ALGIECEL PhotoBioReactor. 427
-
Figure 122. Schematic of carbon capture solar project. 431
-
Figure 123. Aspiring Materials method. 432
-
Figure 124. Aymium’s Biocarbon production. 435
-
Figure 125. Capchar prototype pyrolysis kiln. 447
-
Figure 126. Carbonminer technology. 452
-
Figure 127. Carbon Blade system. 457
-
Figure 128. CarbonCure Technology. 463
-
Figure 129. Direct Air Capture Process. 465
-
Figure 130. CRI process. 468
-
Figure 131. PCCSD Project in China. 482
-
Figure 132. Orca facility. 483
-
Figure 133. Process flow scheme of Compact Carbon Capture Plant. 487
-
Figure 134. Colyser process. 488
-
Figure 135. ECFORM electrolysis reactor schematic. 495
-
Figure 136. Dioxycle modular electrolyzer. 496
-
Figure 137. Fuel Cell Carbon Capture. 513
-
Figure 138. Topsoe's SynCORTM autothermal reforming technology. 521
-
Figure 139. Carbon Capture balloon. 524
-
Figure 140. Holy Grail DAC system. 526
-
Figure 141. INERATEC unit. 531
-
Figure 142. Infinitree swing method. 532
-
Figure 143. Audi/Krajete unit. 537
-
Figure 144. Made of Air's HexChar panels. 546
-
Figure 145. Mosaic Materials MOFs. 554
-
Figure 146. Neustark modular plant. 557
-
Figure 147. OCOchem’s Carbon Flux Electrolyzer. 565
-
Figure 148. ZerCaL™ process. 567
-
Figure 149. CCS project at Arthit offshore gas field. 577
-
Figure 150. RepAir technology. 581
-
Figure 151. Soletair Power unit. 592
-
Figure 152. Sunfire process for Blue Crude production. 598
-
Figure 153. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right). 600
-
Figure 154. Takavator. 602
-
Figure 155. O12 Reactor. 607
-
Figure 156. Sunglasses with lenses made from CO2-derived materials. 607
-
Figure 157. CO2 made car part. 608
-
Figure 158. Molecular sieving membrane. 609
ページTOPに戻る
本レポートと同分野(環境・エネルギー)の最新刊レポート
Future Markets, inc.社のバイオエコノミー分野での最新刊レポート
本レポートと同じKEY WORD()の最新刊レポート
- 本レポートと同じKEY WORDの最新刊レポートはありません。
よくあるご質問
Future Markets, inc.社はどのような調査会社ですか?
Future Markets, inc.は先端技術に焦点をあてたスウェーデンの調査会社です。
2009年設立のFMi社は先端素材、バイオ由来の素材、ナノマテリアルの市場をトラッキングし、企業や学... もっと見る
調査レポートの納品までの日数はどの程度ですか?
在庫のあるものは速納となりますが、平均的には 3-4日と見て下さい。
但し、一部の調査レポートでは、発注を受けた段階で内容更新をして納品をする場合もあります。
発注をする前のお問合せをお願いします。
注文の手続きはどのようになっていますか?
1)お客様からの御問い合わせをいただきます。
2)見積書やサンプルの提示をいたします。
3)お客様指定、もしくは弊社の発注書をメール添付にて発送してください。
4)データリソース社からレポート発行元の調査会社へ納品手配します。
5) 調査会社からお客様へ納品されます。最近は、pdfにてのメール納品が大半です。
お支払方法の方法はどのようになっていますか?
納品と同時にデータリソース社よりお客様へ請求書(必要に応じて納品書も)を発送いたします。
お客様よりデータリソース社へ(通常は円払い)の御振り込みをお願いします。
請求書は、納品日の日付で発行しますので、翌月最終営業日までの当社指定口座への振込みをお願いします。振込み手数料は御社負担にてお願いします。
お客様の御支払い条件が60日以上の場合は御相談ください。
尚、初めてのお取引先や個人の場合、前払いをお願いすることもあります。ご了承のほど、お願いします。
データリソース社はどのような会社ですか?
当社は、世界各国の主要調査会社・レポート出版社と提携し、世界各国の市場調査レポートや技術動向レポートなどを日本国内の企業・公官庁及び教育研究機関に提供しております。
世界各国の「市場・技術・法規制などの」実情を調査・収集される時には、データリソース社にご相談ください。
お客様の御要望にあったデータや情報を抽出する為のレポート紹介や調査のアドバイスも致します。
|
|